aitext2imagemusictext2videoblendersegmindlongscopetext2speechbarkpotatgenerativetext2audioaicinemaopendallezeroscopediffusionstable
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
419 lines
13 KiB
419 lines
13 KiB
# https://modelscope.cn/models/damo/text-to-video-synthesis/summary |
|
|
|
bl_info = { |
|
"name": "Text to Video", |
|
"author": "tintwotin", |
|
"version": (1, 0), |
|
"blender": (3, 4, 0), |
|
"location": "Video Sequence Editor > Sidebar > Generator", |
|
"description": "Convert text to video", |
|
"category": "Sequencer", |
|
} |
|
|
|
import bpy, ctypes |
|
from bpy.types import Operator, Panel |
|
from bpy.props import StringProperty, BoolProperty, EnumProperty, IntProperty |
|
import site |
|
import subprocess |
|
import sys, os |
|
import string |
|
from os.path import dirname, realpath, isfile |
|
import shutil |
|
|
|
|
|
def show_system_console(show): |
|
# https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-showwindow |
|
SW_HIDE = 0 |
|
SW_SHOW = 5 |
|
|
|
ctypes.windll.user32.ShowWindow( |
|
ctypes.windll.kernel32.GetConsoleWindow(), SW_SHOW if show else SW_HIDE |
|
) |
|
|
|
|
|
def set_system_console_topmost(top): |
|
# https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-setwindowpos |
|
HWND_NOTOPMOST = -2 |
|
HWND_TOPMOST = -1 |
|
HWND_TOP = 0 |
|
SWP_NOMOVE = 0x0002 |
|
SWP_NOSIZE = 0x0001 |
|
SWP_NOZORDER = 0x0004 |
|
|
|
ctypes.windll.user32.SetWindowPos( |
|
ctypes.windll.kernel32.GetConsoleWindow(), |
|
HWND_TOP if top else HWND_NOTOPMOST, |
|
0, |
|
0, |
|
0, |
|
0, |
|
SWP_NOMOVE | SWP_NOSIZE | SWP_NOZORDER, |
|
) |
|
|
|
|
|
def closest_divisible_64(num): |
|
# Determine the remainder when num is divided by 64 |
|
remainder = num % 64 |
|
|
|
# If the remainder is less than or equal to 32, return num - remainder, |
|
# but ensure the result is not less than 64 |
|
if remainder <= 32: |
|
result = num - remainder |
|
return max(result, 192) |
|
# Otherwise, return num + (64 - remainder) |
|
else: |
|
return num + (64 - remainder) |
|
|
|
|
|
def find_first_empty_channel(start_frame, end_frame): |
|
for ch in range(1, len(bpy.context.scene.sequence_editor.sequences_all) + 1): |
|
for seq in bpy.context.scene.sequence_editor.sequences_all: |
|
if ( |
|
seq.channel == ch |
|
and seq.frame_final_start < end_frame |
|
and (seq.frame_final_start + seq.frame_final_duration) > start_frame |
|
): |
|
break |
|
else: |
|
return ch |
|
return 1 |
|
|
|
|
|
def clean_path(string_path): |
|
valid_chars = "-_.() %s%s" % (string.ascii_letters, string.digits) |
|
clean_path = "".join(c if c in valid_chars else "_" for c in string_path) |
|
return clean_path |
|
|
|
|
|
def import_module(self, module, install_module): |
|
show_system_console(True) |
|
set_system_console_topmost(True) |
|
|
|
module = str(module) |
|
try: |
|
exec("import " + module) |
|
except ModuleNotFoundError: |
|
app_path = site.USER_SITE |
|
if app_path not in sys.path: |
|
sys.path.append(app_path) |
|
pybin = sys.executable |
|
self.report({"INFO"}, "Installing: " + module + " module.") |
|
print("Installing: " + module + " module") |
|
subprocess.check_call( |
|
[ |
|
pybin, |
|
"-m", |
|
"pip", |
|
"install", |
|
install_module, |
|
"--no-warn-script-location", |
|
"--user", |
|
] |
|
) |
|
try: |
|
exec("import " + module) |
|
except ModuleNotFoundError: |
|
return False |
|
return True |
|
|
|
|
|
def install_modules(self): |
|
app_path = site.USER_SITE |
|
if app_path not in sys.path: |
|
sys.path.append(app_path) |
|
pybin = sys.executable |
|
|
|
print("Ensuring: pip") |
|
try: |
|
subprocess.call([pybin, "-m", "ensurepip"]) |
|
subprocess.call([pybin, "-m", "pip", "install", "--upgrade", "pip"]) |
|
except ImportError: |
|
pass |
|
try: |
|
exec("import torch") |
|
except ModuleNotFoundError: |
|
app_path = site.USER_SITE |
|
if app_path not in sys.path: |
|
sys.path.append(app_path) |
|
pybin = sys.executable |
|
self.report({"INFO"}, "Installing: torch module.") |
|
print("Installing: torch module") |
|
subprocess.check_call( |
|
[ |
|
pybin, |
|
"-m", |
|
"pip", |
|
"install", |
|
"torch", |
|
"--index-url", |
|
"https://download.pytorch.org/whl/cu118", |
|
"--no-warn-script-location", |
|
"--user", |
|
] |
|
) |
|
subprocess.check_call( |
|
[ |
|
pybin, |
|
"-m", |
|
"pip", |
|
"install", |
|
"torchvision", |
|
"--index-url", |
|
"https://download.pytorch.org/whl/cu118", |
|
"--no-warn-script-location", |
|
"--user", |
|
] |
|
) |
|
subprocess.check_call( |
|
[ |
|
pybin, |
|
"-m", |
|
"pip", |
|
"install", |
|
"torchaudio", |
|
"--index-url", |
|
"https://download.pytorch.org/whl/cu118", |
|
"--no-warn-script-location", |
|
"--user", |
|
] |
|
) |
|
import_module(self, "soundfile", "PySoundFile") # Sox for Linux pip install sox |
|
import_module(self, "diffusers", "diffusers") |
|
import_module(self, "accelerate", "accelerate") |
|
import_module(self, "transformers", "transformers") |
|
import_module(self, "cv2", "opencv_python") |
|
|
|
|
|
class SEQUENCER_OT_generate_movie(Operator): |
|
"""Text to Video""" |
|
|
|
bl_idname = "sequencer.generate_movie" |
|
bl_label = "Prompt" |
|
bl_description = "Convert text to video" |
|
bl_options = {"REGISTER", "UNDO"} |
|
|
|
def execute(self, context): |
|
if not bpy.types.Scene.generate_movie_prompt: |
|
return {"CANCELLED"} |
|
scene = context.scene |
|
seq_editor = scene.sequence_editor |
|
if not seq_editor: |
|
scene.sequence_editor_create() |
|
install_modules(self) |
|
|
|
import torch |
|
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler |
|
from diffusers.utils import export_to_video |
|
|
|
prompt = scene.generate_movie_prompt |
|
movie_x = scene.generate_movie_x |
|
movie_y = scene.generate_movie_y |
|
x = scene.generate_movie_x = closest_divisible_64(movie_x) |
|
y = scene.generate_movie_y = closest_divisible_64(movie_y) |
|
duration = scene.generate_movie_frames |
|
movie_num_inference_steps = scene.movie_num_inference_steps |
|
|
|
wm = bpy.context.window_manager |
|
tot = scene.movie_num_batch |
|
wm.progress_begin(0, tot) |
|
|
|
for i in range(scene.movie_num_batch): |
|
|
|
wm.progress_update(i) |
|
if i > 0: |
|
empty_channel = scene.sequence_editor.active_strip.channel |
|
start_frame = scene.sequence_editor.active_strip.frame_final_start + scene.sequence_editor.active_strip.frame_final_duration |
|
else: |
|
empty_channel = find_first_empty_channel(0, 10000000000) |
|
start_frame = scene.frame_current |
|
|
|
# Options: https://huggingface.co/docs/diffusers/api/pipelines/text_to_video |
|
pipe = DiffusionPipeline.from_pretrained( |
|
"damo-vilab/text-to-video-ms-1.7b", |
|
torch_dtype=torch.float16, |
|
variant="fp16", |
|
) |
|
|
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) |
|
pipe.enable_model_cpu_offload() |
|
|
|
# memory optimization |
|
pipe.enable_vae_slicing() |
|
|
|
video_frames = pipe( |
|
prompt, num_inference_steps=movie_num_inference_steps, height=y, width=x, num_frames=duration, |
|
).frames |
|
src_path = export_to_video(video_frames) |
|
|
|
dst_path = dirname(realpath(__file__)) + "/" + os.path.basename(src_path) |
|
shutil.move(src_path, dst_path) |
|
if os.path.isfile(dst_path): |
|
strip = scene.sequence_editor.sequences.new_movie( |
|
name=context.scene.generate_movie_prompt, |
|
frame_start=start_frame, |
|
filepath=dst_path, |
|
channel=empty_channel, |
|
fit_method="FIT", |
|
) |
|
scene.sequence_editor.active_strip = strip |
|
else: |
|
print("No resulting file found.") |
|
wm.progress_end() |
|
return {"FINISHED"} |
|
|
|
|
|
class SEQUENCER_OT_generate_audio(Operator): |
|
"""Text to Audio""" |
|
|
|
bl_idname = "sequencer.generate_audio" |
|
bl_label = "Prompt" |
|
bl_description = "Convert text to audio" |
|
bl_options = {"REGISTER", "UNDO"} |
|
|
|
def execute(self, context): |
|
if not bpy.types.Scene.generate_audio_prompt: |
|
return {"CANCELLED"} |
|
scene = context.scene |
|
seq_editor = scene.sequence_editor |
|
if not seq_editor: |
|
scene.sequence_editor_create() |
|
install_modules(self) |
|
|
|
from diffusers import AudioLDMPipeline |
|
import torch |
|
import scipy |
|
|
|
repo_id = "cvssp/audioldm" |
|
pipe = AudioLDMPipeline.from_pretrained(repo_id, torch_dtype=torch.float16) |
|
pipe = pipe.to("cuda") |
|
|
|
prompt = context.scene.generate_audio_prompt |
|
# Options: https://huggingface.co/docs/diffusers/main/en/api/pipelines/audioldm |
|
audio = pipe(prompt, num_inference_steps=10, audio_length_in_s=5.0).audios[0] |
|
print(audio.tostring()) |
|
filename = dirname(realpath(__file__)) + "/" + clean_path(prompt + ".wav") |
|
scipy.io.wavfile.write(filename, 48000, audio.transpose()) |
|
|
|
filepath = filename |
|
if os.path.isfile(filepath): |
|
empty_channel = find_first_empty_channel(0, 10000000000) |
|
strip = scene.sequence_editor.sequences.new_sound( |
|
name=prompt, |
|
filepath=filepath, |
|
channel=empty_channel, |
|
frame_start=scene.frame_current, |
|
) |
|
scene.sequence_editor.active_strip = strip |
|
else: |
|
print("No resulting file found!") |
|
return {"FINISHED"} |
|
|
|
|
|
class SEQEUNCER_PT_generate_movie(Panel): |
|
"""Text to Video using ModelScope""" |
|
|
|
bl_idname = "SEQUENCER_PT_sequencer_generate_movie_panel" |
|
bl_label = "Text to Video" |
|
bl_space_type = "SEQUENCE_EDITOR" |
|
bl_region_type = "UI" |
|
bl_category = "Generator" |
|
|
|
def draw(self, context): |
|
layout = self.layout |
|
scene = context.scene |
|
row = layout.row() |
|
row.scale_y = 1.2 |
|
row.prop(context.scene, "generate_movie_prompt", text="") |
|
col = layout.column(align=True) |
|
row = col.row() |
|
row.prop(context.scene, "generate_movie_x", text="X") |
|
row.prop(context.scene, "generate_movie_frames", text="Frames") |
|
row = col.row() |
|
row.prop(context.scene, "generate_movie_y", text="Y") |
|
row.prop(context.scene, "movie_num_inference_steps", text="Inference") |
|
|
|
row = layout.row(align=True) |
|
row.scale_y = 1.2 |
|
row.operator("sequencer.generate_movie", text="Generate") |
|
row.prop(context.scene, "movie_num_batch", text="") |
|
|
|
|
|
class SEQEUNCER_PT_generate_audio(Panel): |
|
"""Text to Audio""" |
|
|
|
bl_idname = "SEQUENCER_PT_sequencer_generate_audio_panel" |
|
bl_label = "Text to Audio" |
|
bl_space_type = "SEQUENCE_EDITOR" |
|
bl_region_type = "UI" |
|
bl_category = "Generator" |
|
|
|
def draw(self, context): |
|
layout = self.layout |
|
scene = context.scene |
|
row = layout.row() |
|
row.scale_y = 1.2 |
|
row.prop(context.scene, "generate_audio_prompt", text="") |
|
row = layout.row() |
|
row.scale_y = 1.2 |
|
row.operator("sequencer.generate_audio", text="Generate Audio") |
|
|
|
|
|
classes = ( |
|
SEQUENCER_OT_generate_movie, |
|
#SEQUENCER_OT_generate_audio, |
|
SEQEUNCER_PT_generate_movie, |
|
#SEQEUNCER_PT_generate_audio, |
|
) |
|
|
|
|
|
def register(): |
|
for cls in classes: |
|
bpy.utils.register_class(cls) |
|
bpy.types.Scene.generate_movie_prompt = bpy.props.StringProperty( |
|
name="generate_movie_prompt", default="" |
|
) |
|
bpy.types.Scene.generate_audio_prompt = bpy.props.StringProperty( |
|
name="generate_audio_prompt", default="" |
|
) |
|
bpy.types.Scene.generate_movie_x = bpy.props.IntProperty( |
|
name="generate_movie_x", default=512, step=64, min=192 |
|
) |
|
bpy.types.Scene.generate_movie_y = bpy.props.IntProperty( |
|
name="generate_movie_y", |
|
default=256, |
|
step=64, |
|
min=192, |
|
) |
|
# The number of frames to be generated. |
|
bpy.types.Scene.generate_movie_frames = bpy.props.IntProperty( |
|
name="generate_movie_y", |
|
default=16, |
|
min=1, |
|
) |
|
# The number of denoising steps. More denoising steps usually lead to a higher quality audio at the expense of slower inference. |
|
bpy.types.Scene.movie_num_inference_steps = bpy.props.IntProperty( |
|
name="movie_num_inference_steps", |
|
default=25, |
|
min=1, |
|
) |
|
# The number of videos to generate. |
|
bpy.types.Scene.movie_num_batch = bpy.props.IntProperty( |
|
name="movie_num_batch", |
|
default=1, |
|
min=1, |
|
) |
|
|
|
|
|
def unregister(): |
|
for cls in classes: |
|
bpy.utils.unregister_class(cls) |
|
del bpy.types.Scene.generate_movie_prompt |
|
del bpy.types.Scene.generate_audio_prompt |
|
del bpy.types.Scene.generate_movie_x |
|
del bpy.types.Scene.generate_movie_y |
|
del bpy.types.Scene.movie_num_inference_steps |
|
del bpy.types.Scene.movie_num_batch |
|
|
|
|
|
if __name__ == "__main__": |
|
register()
|
|
|