aitext2imagediffusionstablemusictext2videoblendersegmindlongscopetext2speechbarkpotatgenerativetext2audioaicinemaopendallezeroscope
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
302 lines
13 KiB
302 lines
13 KiB
# from https://github.com/lyn-rgb/FreeU_Diffusers |
|
|
|
import torch |
|
import torch.fft as fft |
|
from diffusers.models.unet_2d_condition import logger |
|
from diffusers.utils import is_torch_version |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
|
|
def isinstance_str(x: object, cls_name: str): |
|
""" |
|
Checks whether x has any class *named* cls_name in its ancestry. |
|
Doesn't require access to the class's implementation. |
|
|
|
Useful for patching! |
|
""" |
|
|
|
for _cls in x.__class__.__mro__: |
|
if _cls.__name__ == cls_name: |
|
return True |
|
|
|
return False |
|
|
|
|
|
def Fourier_filter(x, threshold, scale): |
|
dtype = x.dtype |
|
x = x.type(torch.float32) |
|
# FFT |
|
x_freq = fft.fftn(x, dim=(-2, -1)) |
|
x_freq = fft.fftshift(x_freq, dim=(-2, -1)) |
|
|
|
B, C, H, W = x_freq.shape |
|
mask = torch.ones((B, C, H, W)).cuda() |
|
|
|
crow, ccol = H // 2, W //2 |
|
mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale |
|
x_freq = x_freq * mask |
|
|
|
# IFFT |
|
x_freq = fft.ifftshift(x_freq, dim=(-2, -1)) |
|
x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real |
|
|
|
x_filtered = x_filtered.type(dtype) |
|
return x_filtered |
|
|
|
|
|
def register_upblock2d(model): |
|
def up_forward(self): |
|
def forward(hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None): |
|
for resnet in self.resnets: |
|
# pop res hidden states |
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
#print(f"in upblock2d, hidden states shape: {hidden_states.shape}") |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
if is_torch_version(">=", "1.11.0"): |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False |
|
) |
|
else: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), hidden_states, temb |
|
) |
|
else: |
|
hidden_states = resnet(hidden_states, temb) |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, upsample_size) |
|
|
|
return hidden_states |
|
|
|
return forward |
|
|
|
for i, upsample_block in enumerate(model.unet.up_blocks): |
|
if isinstance_str(upsample_block, "UpBlock2D"): |
|
upsample_block.forward = up_forward(upsample_block) |
|
|
|
|
|
def register_free_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2): |
|
def up_forward(self): |
|
def forward(hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, scale: float = 1.0): |
|
for resnet in self.resnets: |
|
# pop res hidden states |
|
#print(f"in free upblock2d, hidden states shape: {hidden_states.shape}") |
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
|
|
# --------------- FreeU code ----------------------- |
|
# Only operate on the first two stages |
|
if hidden_states.shape[1] == 1280: |
|
hidden_states[:,:640] = hidden_states[:,:640] * self.b1 |
|
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1) |
|
if hidden_states.shape[1] == 640: |
|
hidden_states[:,:320] = hidden_states[:,:320] * self.b2 |
|
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2) |
|
# --------------------------------------------------------- |
|
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
if is_torch_version(">=", "1.11.0"): |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False |
|
) |
|
else: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), hidden_states, temb |
|
) |
|
else: |
|
hidden_states = resnet(hidden_states, temb, scale=scale) |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, upsample_size, scale=scale) |
|
|
|
return hidden_states |
|
|
|
return forward |
|
|
|
for i, upsample_block in enumerate(model.unet.up_blocks): |
|
if isinstance_str(upsample_block, "UpBlock2D"): |
|
upsample_block.forward = up_forward(upsample_block) |
|
setattr(upsample_block, 'b1', b1) |
|
setattr(upsample_block, 'b2', b2) |
|
setattr(upsample_block, 's1', s1) |
|
setattr(upsample_block, 's2', s2) |
|
|
|
|
|
def register_crossattn_upblock2d(model): |
|
def up_forward(self): |
|
def forward( |
|
hidden_states: torch.FloatTensor, |
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], |
|
temb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
upsample_size: Optional[int] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
): |
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
# pop res hidden states |
|
#print(f"in crossatten upblock2d, hidden states shape: {hidden_states.shape}") |
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), |
|
hidden_states, |
|
temb, |
|
**ckpt_kwargs, |
|
) |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(attn, return_dict=False), |
|
hidden_states, |
|
encoder_hidden_states, |
|
None, # timestep |
|
None, # class_labels |
|
cross_attention_kwargs, |
|
attention_mask, |
|
encoder_attention_mask, |
|
**ckpt_kwargs, |
|
)[0] |
|
else: |
|
hidden_states = resnet(hidden_states, temb) |
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
return_dict=False, |
|
)[0] |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, upsample_size) |
|
|
|
return hidden_states |
|
|
|
return forward |
|
|
|
for i, upsample_block in enumerate(model.unet.up_blocks): |
|
if isinstance_str(upsample_block, "CrossAttnUpBlock2D"): |
|
upsample_block.forward = up_forward(upsample_block) |
|
|
|
|
|
def register_free_crossattn_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2): |
|
def up_forward(self): |
|
def forward( |
|
hidden_states: torch.FloatTensor, |
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], |
|
temb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
upsample_size: Optional[int] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
): |
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
# pop res hidden states |
|
#print(f"in free crossatten upblock2d, hidden states shape: {hidden_states.shape}") |
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
|
|
# --------------- FreeU code ----------------------- |
|
# Only operate on the first two stages |
|
if hidden_states.shape[1] == 1280: |
|
hidden_states[:,:640] = hidden_states[:,:640] * self.b1 |
|
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1) |
|
if hidden_states.shape[1] == 640: |
|
hidden_states[:,:320] = hidden_states[:,:320] * self.b2 |
|
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2) |
|
# --------------------------------------------------------- |
|
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), |
|
hidden_states, |
|
temb, |
|
**ckpt_kwargs, |
|
) |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(attn, return_dict=False), |
|
hidden_states, |
|
encoder_hidden_states, |
|
None, # timestep |
|
None, # class_labels |
|
cross_attention_kwargs, |
|
attention_mask, |
|
encoder_attention_mask, |
|
**ckpt_kwargs, |
|
)[0] |
|
else: |
|
hidden_states = resnet(hidden_states, temb) |
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
return_dict=False, |
|
)[0] |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, upsample_size) |
|
|
|
return hidden_states |
|
|
|
return forward |
|
|
|
for i, upsample_block in enumerate(model.unet.up_blocks): |
|
if isinstance_str(upsample_block, "CrossAttnUpBlock2D"): |
|
upsample_block.forward = up_forward(upsample_block) |
|
setattr(upsample_block, 'b1', b1) |
|
setattr(upsample_block, 'b2', b2) |
|
setattr(upsample_block, 's1', s1) |
|
setattr(upsample_block, 's2', s2) |