aitext2imageopendallezeroscopediffusionstablemusictext2videoblendersegmindlongscopetext2speechbarkpotatgenerativetext2audioaicinema
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2590 lines
92 KiB
2590 lines
92 KiB
# https://modelscope.cn/models/damo/text-to-video-synthesis/summary |
|
|
|
bl_info = { |
|
"name": "Generative AI", |
|
"author": "tintwotin", |
|
"version": (1, 4), |
|
"blender": (3, 4, 0), |
|
"location": "Video Sequence Editor > Sidebar > Generative AI", |
|
"description": "Generate media in the VSE", |
|
"category": "Sequencer", |
|
} |
|
|
|
import bpy, ctypes, random |
|
from bpy.types import Operator, Panel, AddonPreferences |
|
from bpy.props import ( |
|
StringProperty, |
|
BoolProperty, |
|
EnumProperty, |
|
IntProperty, |
|
FloatProperty, |
|
) |
|
import site, platform, json |
|
import subprocess |
|
import sys, os, aud, re |
|
import string |
|
from os.path import dirname, realpath, isdir, join, basename |
|
import shutil |
|
from datetime import date |
|
|
|
os_platform = platform.system() # 'Linux', 'Darwin', 'Java', 'Windows' |
|
|
|
|
|
def show_system_console(show): |
|
if os_platform == "Windows": |
|
# https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-showwindow |
|
SW_HIDE = 0 |
|
SW_SHOW = 5 |
|
|
|
ctypes.windll.user32.ShowWindow( |
|
ctypes.windll.kernel32.GetConsoleWindow(), SW_SHOW # if show else SW_HIDE |
|
) |
|
|
|
|
|
def set_system_console_topmost(top): |
|
if os_platform == "Windows": |
|
# https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-setwindowpos |
|
HWND_NOTOPMOST = -2 |
|
HWND_TOPMOST = -1 |
|
HWND_TOP = 0 |
|
SWP_NOMOVE = 0x0002 |
|
SWP_NOSIZE = 0x0001 |
|
SWP_NOZORDER = 0x0004 |
|
|
|
ctypes.windll.user32.SetWindowPos( |
|
ctypes.windll.kernel32.GetConsoleWindow(), |
|
HWND_TOP if top else HWND_NOTOPMOST, |
|
0, |
|
0, |
|
0, |
|
0, |
|
SWP_NOMOVE | SWP_NOSIZE | SWP_NOZORDER, |
|
) |
|
|
|
|
|
def split_and_recombine_text(text, desired_length=200, max_length=300): |
|
"""Split text it into chunks of a desired length trying to keep sentences intact.""" |
|
# normalize text, remove redundant whitespace and convert non-ascii quotes to ascii |
|
text = re.sub(r"\n\n+", "\n", text) |
|
text = re.sub(r"\s+", " ", text) |
|
text = re.sub(r"[“”]", '"', text) |
|
|
|
rv = [] |
|
in_quote = False |
|
current = "" |
|
split_pos = [] |
|
pos = -1 |
|
end_pos = len(text) - 1 |
|
|
|
def seek(delta): |
|
nonlocal pos, in_quote, current |
|
is_neg = delta < 0 |
|
for _ in range(abs(delta)): |
|
if is_neg: |
|
pos -= 1 |
|
current = current[:-1] |
|
else: |
|
pos += 1 |
|
current += text[pos] |
|
if text[pos] == '"': |
|
in_quote = not in_quote |
|
return text[pos] |
|
|
|
def peek(delta): |
|
p = pos + delta |
|
return text[p] if p < end_pos and p >= 0 else "" |
|
|
|
def commit(): |
|
nonlocal rv, current, split_pos |
|
rv.append(current) |
|
current = "" |
|
split_pos = [] |
|
|
|
while pos < end_pos: |
|
c = seek(1) |
|
# do we need to force a split? |
|
if len(current) >= max_length: |
|
if len(split_pos) > 0 and len(current) > (desired_length / 2): |
|
# we have at least one sentence and we are over half the desired length, seek back to the last split |
|
d = pos - split_pos[-1] |
|
seek(-d) |
|
else: |
|
# no full sentences, seek back until we are not in the middle of a word and split there |
|
while c not in "!?.,\n " and pos > 0 and len(current) > desired_length: |
|
c = seek(-1) |
|
commit() |
|
# check for sentence boundaries |
|
elif not in_quote and (c in "!?\n" or (c == "." and peek(1) in "\n ")): |
|
# seek forward if we have consecutive boundary markers but still within the max length |
|
while ( |
|
pos < len(text) - 1 and len(current) < max_length and peek(1) in "!?.," |
|
): |
|
c = seek(1) |
|
split_pos.append(pos) |
|
if len(current) >= desired_length: |
|
commit() |
|
# treat end of quote as a boundary if its followed by a space or newline |
|
elif in_quote and peek(1) == '"' and peek(2) in "\n ": |
|
seek(2) |
|
split_pos.append(pos) |
|
rv.append(current) |
|
|
|
# clean up, remove lines with only whitespace or punctuation |
|
rv = [s.strip() for s in rv] |
|
rv = [s for s in rv if len(s) > 0 and not re.match(r"^[\s\.,;:!?]*$", s)] |
|
|
|
return rv |
|
|
|
|
|
def extract_numbers(input_string): |
|
numbers = re.findall(r'\d+', input_string) |
|
if numbers: |
|
return int(numbers[0]) |
|
else: |
|
return None |
|
|
|
|
|
def load_styles(json_filename): |
|
styles_array = [] |
|
|
|
try: |
|
with open(json_filename, "r") as json_file: |
|
data = json.load(json_file) |
|
except FileNotFoundError: |
|
print(f"JSON file '{json_filename}' not found.") |
|
data = [] |
|
|
|
for item in data: |
|
name = item["name"] |
|
prompt = item["prompt"] |
|
negative_prompt = item["negative_prompt"] |
|
styles_array.append((negative_prompt.lower().replace(" ", "_"), name.title(), prompt)) |
|
|
|
return styles_array |
|
|
|
|
|
def style_prompt(prompt): |
|
selected_entry_key = bpy.context.scene.generatorai_styles |
|
|
|
return_array = [] |
|
|
|
if selected_entry_key: |
|
styles_array = load_styles(os.path.dirname(os.path.abspath(__file__))+"/styles.json") |
|
if selected_entry_key: |
|
selected_entry = next((item for item in styles_array if item[0] == selected_entry_key), None) |
|
if selected_entry: |
|
selected_entry_list = list(selected_entry) |
|
return_array.append(selected_entry_list[2].replace("{prompt}", prompt)) |
|
return_array.append(selected_entry_list[0].replace("_", " ")) |
|
return return_array |
|
|
|
return_array.append(prompt) |
|
return_array.append(bpy.context.scene.generate_movie_negative_prompt) |
|
return return_array |
|
|
|
|
|
def closest_divisible_64(num): |
|
# Determine the remainder when num is divided by 64 |
|
remainder = (num % 64) |
|
|
|
# If the remainder is less than or equal to 32, return num - remainder, |
|
# but ensure the result is not less than 64 |
|
if remainder <= 32: |
|
result = num - remainder |
|
return max(result, 192) |
|
# Otherwise, return num + (64 - remainder) |
|
else: |
|
return max(num + (64 - remainder), 192) |
|
|
|
|
|
def find_first_empty_channel(start_frame, end_frame): |
|
for ch in range(1, len(bpy.context.scene.sequence_editor.sequences_all) + 1): |
|
for seq in bpy.context.scene.sequence_editor.sequences_all: |
|
if ( |
|
seq.channel == ch |
|
and seq.frame_final_start < end_frame |
|
and (seq.frame_final_start + seq.frame_final_duration) > start_frame |
|
): |
|
break |
|
else: |
|
return ch |
|
return 1 |
|
|
|
|
|
def clean_filename(filename): |
|
filename = filename[:50] |
|
valid_chars = "-_,.() %s%s" % (string.ascii_letters, string.digits) |
|
clean_filename = "".join(c if c in valid_chars else "_" for c in filename) |
|
clean_filename = clean_filename.replace("\n", " ") |
|
clean_filename = clean_filename.replace("\r", " ") |
|
clean_filename = clean_filename.replace(" ", "_") |
|
|
|
return clean_filename.strip() |
|
|
|
|
|
def create_folder(folderpath): |
|
try: |
|
os.makedirs(folderpath) |
|
return True |
|
except FileExistsError: |
|
# directory already exists |
|
pass |
|
return False |
|
|
|
def solve_path(full_path): |
|
preferences = bpy.context.preferences |
|
addon_prefs = preferences.addons[__name__].preferences |
|
name, ext = os.path.splitext(full_path) |
|
dir_path, filename = os.path.split(name) |
|
dir_path = addon_prefs.generator_ai+"/"+str(date.today()) |
|
create_folder(dir_path) |
|
cleaned_filename = clean_filename(filename) |
|
new_filename = cleaned_filename + ext |
|
i = 1 |
|
while os.path.exists(os.path.join(dir_path, new_filename)): |
|
name, ext = os.path.splitext(new_filename) |
|
new_filename = f"{name.rsplit('(', 1)[0]}({i}){ext}" |
|
i += 1 |
|
return os.path.join(dir_path, new_filename) |
|
|
|
|
|
def limit_string(my_string): |
|
if len(my_string) > 77: |
|
print( |
|
"Warning: String is longer than 77 characters. Excessive string:", |
|
my_string[77:], |
|
) |
|
return my_string[:77] |
|
else: |
|
return my_string |
|
|
|
|
|
def load_video_as_np_array(video_path): |
|
import cv2 |
|
import numpy as np |
|
|
|
cap = cv2.VideoCapture(video_path) |
|
|
|
if not cap.isOpened(): |
|
raise IOError("Error opening video file") |
|
frames = [] |
|
while True: |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
frames.append(frame) |
|
cap.release() |
|
return np.array(frames) |
|
|
|
|
|
def load_first_frame(file_path): |
|
import cv2, PIL, os |
|
from diffusers.utils import load_image |
|
extension = os.path.splitext(file_path)[-1].lower() # Convert to lowercase for case-insensitive comparison |
|
valid_extensions = {'.sgi', '.rgb', '.bw', '.cin', '.dpx', '.png', '.jpg', '.jpeg', '.jp2', '.jp2', '.j2c', '.tga', '.exr', '.hdr', '.tif', '.tiff', '.webp'} |
|
|
|
if extension in valid_extensions: |
|
image = cv2.imread(file_path) |
|
#if image is not None: |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
return PIL.Image.fromarray(image) |
|
else: |
|
# Try to open the file as a video |
|
cap = cv2.VideoCapture(file_path) |
|
|
|
# Check if the file was successfully opened as a video |
|
if cap.isOpened(): |
|
# Read the first frame from the video |
|
ret, frame = cap.read() |
|
cap.release() # Release the video capture object |
|
|
|
if ret: |
|
# If the first frame was successfully read, it's a video |
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
return PIL.Image.fromarray(frame) |
|
|
|
# If neither video nor image worked, return None |
|
return None |
|
|
|
|
|
def process_frames(frame_folder_path, target_width): |
|
from PIL import Image |
|
Image.MAX_IMAGE_PIXELS = None |
|
import cv2 |
|
|
|
processed_frames = [] |
|
|
|
# List all image files in the folder |
|
image_files = sorted( |
|
[f for f in os.listdir(frame_folder_path) if f.endswith(".png")] |
|
) |
|
|
|
for image_file in image_files: |
|
image_path = os.path.join(frame_folder_path, image_file) |
|
img = Image.open(image_path) |
|
|
|
# Process the image (resize and convert to RGB) |
|
frame_width, frame_height = img.size |
|
|
|
# Calculate the target height to maintain the original aspect ratio |
|
target_height = int((target_width / frame_width) * frame_height) |
|
|
|
# Ensure width and height are divisible by 64 |
|
target_width = closest_divisible_64(target_width) |
|
target_height = closest_divisible_64(target_height) |
|
|
|
img = img.resize((target_width, target_height), Image.ANTIALIAS) |
|
img = img.convert("RGB") |
|
|
|
processed_frames.append(img) |
|
return processed_frames |
|
|
|
|
|
|
|
def process_video(input_video_path, output_video_path): |
|
from PIL import Image |
|
Image.MAX_IMAGE_PIXELS = None |
|
import cv2 |
|
import shutil |
|
|
|
scene = bpy.context.scene |
|
movie_x = scene.generate_movie_x |
|
|
|
# Create a temporary folder for storing frames |
|
temp_image_folder = solve_path("temp_images") |
|
if not os.path.exists(temp_image_folder): |
|
os.makedirs(temp_image_folder) |
|
|
|
# Open the video file using OpenCV |
|
cap = cv2.VideoCapture(input_video_path) |
|
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
fps = int(cap.get(cv2.CAP_PROP_FPS)) |
|
|
|
# Save each loaded frame as an image in the temp folder |
|
for i in range(frame_count): |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
# Save the frame as an image in the temp folder |
|
temp_image_path = os.path.join(temp_image_folder, f"frame_{i:04d}.png") |
|
cv2.imwrite(temp_image_path, frame) |
|
cap.release() |
|
|
|
# Process frames using the separate function |
|
processed_frames = process_frames(temp_image_folder, movie_x) |
|
|
|
# Clean up: Delete the temporary image folder |
|
shutil.rmtree(temp_image_folder) |
|
|
|
return processed_frames |
|
|
|
|
|
#Define the function for zooming effect |
|
def zoomPan(img, zoom=1, angle=0, coord=None): |
|
import cv2 |
|
cy, cx = [i/2 for i in img.shape[:-1]] if coord is None else coord[::-1] |
|
rot = cv2.getRotationMatrix2D((cx, cy), angle, zoom) |
|
res = cv2.warpAffine(img, rot, img.shape[1::-1], flags=cv2.INTER_LINEAR) |
|
return res |
|
|
|
|
|
def process_image(image_path, frames_nr): |
|
from PIL import Image |
|
Image.MAX_IMAGE_PIXELS = None |
|
import cv2, shutil |
|
|
|
scene = bpy.context.scene |
|
movie_x = scene.generate_movie_x |
|
|
|
img = cv2.imread(image_path) |
|
height, width, layers = img.shape |
|
|
|
# Create a temporary folder for storing frames |
|
temp_image_folder = solve_path("/temp_images") |
|
if not os.path.exists(temp_image_folder): |
|
os.makedirs(temp_image_folder) |
|
|
|
max_zoom = 2.0 #Maximum Zoom level (should be > 1.0) |
|
max_rot = 30 #Maximum rotation in degrees, set '0' for no rotation |
|
|
|
#Make the loop for Zooming-in |
|
i = 1 |
|
while i < frames_nr: |
|
zLvl = 1.0 + ((i / (1/(max_zoom-1)) / frames_nr) * 0.005) |
|
angle = 0 #i * max_rot / frames_nr |
|
zoomedImg = zoomPan(img, zLvl, angle, coord=None) |
|
output_path = os.path.join(temp_image_folder, f"frame_{i:04d}.png") |
|
cv2.imwrite(output_path, zoomedImg) |
|
i = i + 1 |
|
|
|
# Process frames using the separate function |
|
processed_frames = process_frames(temp_image_folder, movie_x) |
|
|
|
# Clean up: Delete the temporary image folder |
|
shutil.rmtree(temp_image_folder) |
|
cv2.destroyAllWindows() |
|
|
|
return processed_frames |
|
|
|
|
|
def low_vram(): |
|
import torch |
|
|
|
total_vram = 0 |
|
for i in range(torch.cuda.device_count()): |
|
properties = torch.cuda.get_device_properties(i) |
|
total_vram += properties.total_memory |
|
return (total_vram / (1024**3)) < 24.1 # Y/N under 6.1 GB? |
|
|
|
|
|
def import_module(self, module, install_module): |
|
show_system_console(True) |
|
set_system_console_topmost(True) |
|
|
|
module = str(module) |
|
|
|
try: |
|
exec("import " + module) |
|
except ModuleNotFoundError: |
|
app_path = site.USER_SITE |
|
if app_path not in sys.path: |
|
sys.path.append(app_path) |
|
pybin = sys.executable |
|
self.report({"INFO"}, "Installing: " + module + " module.") |
|
print("Installing: " + module + " module") |
|
subprocess.check_call( |
|
[ |
|
pybin, |
|
"-m", |
|
"pip", |
|
"install", |
|
install_module, |
|
"--no-warn-script-location", |
|
"--user", |
|
] |
|
) |
|
|
|
try: |
|
exec("import " + module) |
|
except ModuleNotFoundError: |
|
return False |
|
|
|
return True |
|
|
|
|
|
def install_modules(self): |
|
app_path = site.USER_SITE |
|
|
|
if app_path not in sys.path: |
|
sys.path.append(app_path) |
|
pybin = sys.executable |
|
|
|
print("Ensuring: pip") |
|
|
|
try: |
|
subprocess.call([pybin, "-m", "ensurepip"]) |
|
subprocess.call([pybin, "-m", "pip", "install", "--upgrade", "pip"]) |
|
except ImportError: |
|
pass |
|
try: |
|
exec("import torch") |
|
except ModuleNotFoundError: |
|
app_path = site.USER_SITE |
|
if app_path not in sys.path: |
|
sys.path.append(app_path) |
|
pybin = sys.executable |
|
self.report({"INFO"}, "Installing: torch module.") |
|
print("Installing: torch module") |
|
if os_platform == "Windows": |
|
subprocess.check_call( |
|
[ |
|
pybin, |
|
"-m", |
|
"pip", |
|
"install", |
|
"torch", |
|
"--index-url", |
|
"https://download.pytorch.org/whl/cu118", |
|
"--no-warn-script-location", |
|
"--user", |
|
] |
|
) |
|
subprocess.check_call( |
|
[ |
|
pybin, |
|
"-m", |
|
"pip", |
|
"install", |
|
"torchvision", |
|
"--index-url", |
|
"https://download.pytorch.org/whl/cu118", |
|
"--no-warn-script-location", |
|
"--user", |
|
] |
|
) |
|
subprocess.check_call( |
|
[ |
|
pybin, |
|
"-m", |
|
"pip", |
|
"install", |
|
"torchaudio", |
|
"--index-url", |
|
"https://download.pytorch.org/whl/cu118", |
|
"--no-warn-script-location", |
|
"--user", |
|
] |
|
) |
|
else: |
|
import_module(self, "torch", "torch") |
|
import_module(self, "torchvision", "torchvision") |
|
import_module(self, "torchaudio", "torchaudio") |
|
if os_platform == "Darwin" or os_platform == "Linux": |
|
import_module(self, "sox", "sox") |
|
else: |
|
import_module(self, "soundfile", "PySoundFile") |
|
#import_module(self, "diffusers", "diffusers") |
|
#import_module(self, "diffusers", "git+https://github.com/huggingface/diffusers.git@v0.19.3") |
|
import_module(self, "diffusers", "git+https://github.com/huggingface/diffusers.git") |
|
import_module(self, "accelerate", "accelerate") |
|
import_module(self, "transformers", "transformers") |
|
# import_module(self, "optimum", "optimum") |
|
import_module(self, "sentencepiece", "sentencepiece") |
|
import_module(self, "safetensors", "safetensors") |
|
import_module(self, "cv2", "opencv_python") |
|
import_module(self, "PIL", "pillow") |
|
import_module(self, "scipy", "scipy") |
|
import_module(self, "IPython", "IPython") |
|
import_module(self, "bark", "git+https://github.com/suno-ai/bark.git") |
|
#import_module(self, "bark", "git+https://github.com/suno-ai/bark.git") |
|
import_module(self, "xformers", "xformers") |
|
import_module(self, "imageio", "imageio") |
|
import_module(self, "imwatermark", "invisible-watermark>=0.2.0") |
|
|
|
if os_platform == "Windows": |
|
subprocess.check_call( |
|
[ |
|
pybin, |
|
"-m", |
|
"pip", |
|
"install", |
|
"libtorrent", |
|
"--no-warn-script-location", |
|
"--user", |
|
] |
|
) |
|
subprocess.check_call( |
|
[ |
|
pybin, |
|
"-m", |
|
"pip", |
|
"install", |
|
"torchaudio", |
|
"--index-url", |
|
"https://huggingface.co/r4ziel/xformers_pre_built/resolve/main/triton-2.0.0-cp310-cp310-win_amd64.whl", |
|
"--no-warn-script-location", |
|
"--user", |
|
] |
|
) |
|
#import_module(self, "audiocraft", "git+https://github.com/facebookresearch/audiocraft.git") |
|
# subprocess.check_call([pybin,"-m","pip","install","force-reinstall","no-deps","pre xformers"]) |
|
subprocess.check_call([pybin, "-m", "pip", "install", "numpy", "--upgrade"]) |
|
if os_platform == "Windows": |
|
subprocess.check_call( |
|
[ |
|
pybin, |
|
"-m", |
|
"pip", |
|
"install", |
|
"torch", |
|
"--index-url", |
|
"https://download.pytorch.org/whl/cu118", |
|
"--no-warn-script-location", |
|
"--user", |
|
] |
|
) |
|
|
|
import_module(self, "modelscope", "modelscope==1.8.4") |
|
#import_module(self, "xformers", "xformers==0.0.20") |
|
#import_module(self, "torch", "torch==2.0.1") |
|
import_module(self, "open_clip_torch", "open_clip_torch>=2.0.2") |
|
#import_module(self, "opencv_python_headless", "opencv-python-headless") |
|
#import_module(self, "opencv_python", "opencv-python") |
|
import_module(self, "einops", "einops>=0.4") |
|
import_module(self, "rotary_embedding_torch", "rotary-embedding-torch") |
|
import_module(self, "fairscale", "fairscale") |
|
#import_module(self, "scipy", "scipy") |
|
#import_module(self, "imageio", "imageio") |
|
import_module(self, "pytorch_lightning", "pytorch-lightning") |
|
import_module(self, "torchsde", "torchsde") |
|
import_module(self, "easydict", "easydict") |
|
|
|
|
|
def get_module_dependencies(module_name): |
|
""" |
|
Get the list of dependencies for a given module. |
|
""" |
|
|
|
app_path = site.USER_SITE |
|
if app_path not in sys.path: |
|
sys.path.append(app_path) |
|
pybin = sys.executable |
|
|
|
result = subprocess.run( |
|
[pybin, "-m", "pip", "show", module_name], capture_output=True, text=True |
|
) |
|
output = result.stdout.strip() |
|
|
|
dependencies = [] |
|
for line in output.split("\n"): |
|
if line.startswith("Requires:"): |
|
dependencies = line.split(":")[1].strip().split(", ") |
|
break |
|
return dependencies |
|
|
|
|
|
def uninstall_module_with_dependencies(module_name): |
|
""" |
|
Uninstall a module and its dependencies. |
|
""" |
|
|
|
show_system_console(True) |
|
set_system_console_topmost(True) |
|
|
|
app_path = site.USER_SITE |
|
if app_path not in sys.path: |
|
sys.path.append(app_path) |
|
pybin = sys.executable |
|
|
|
dependencies = get_module_dependencies(module_name) |
|
|
|
# Uninstall the module |
|
subprocess.run([pybin, "-m", "pip", "uninstall", "-y", module_name]) |
|
|
|
# Uninstall the dependencies |
|
for dependency in dependencies: |
|
subprocess.run([pybin, "-m", "pip", "uninstall", "-y", dependency]) |
|
subprocess.check_call([pybin, "-m", "pip", "install", "numpy"]) |
|
|
|
|
|
def input_strips_updated(self, context): |
|
preferences = context.preferences |
|
addon_prefs = preferences.addons[__name__].preferences |
|
movie_model_card = addon_prefs.movie_model_card |
|
|
|
scene = context.scene |
|
input = scene.input_strips |
|
|
|
if movie_model_card == "stabilityai/stable-diffusion-xl-base-1.0": |
|
scene.input_strips = "input_strips" |
|
if scene.generatorai_typeselect == "video" or scene.generatorai_typeselect == "audio": |
|
scene.inpaint_selected_strip = "" |
|
|
|
def output_strips_updated(self, context): |
|
preferences = context.preferences |
|
addon_prefs = preferences.addons[__name__].preferences |
|
movie_model_card = addon_prefs.movie_model_card |
|
|
|
scene = context.scene |
|
type = scene.generatorai_typeselect |
|
input = scene.input_strips |
|
print(type) |
|
|
|
if type == "movie" or type == "audio": |
|
scene.inpaint_selected_strip = "" |
|
|
|
|
|
class GeneratorAddonPreferences(AddonPreferences): |
|
bl_idname = __name__ |
|
|
|
soundselect: EnumProperty( |
|
name="Sound", |
|
items={ |
|
("ding", "Ding", "A simple bell sound"), |
|
("coin", "Coin", "A Mario-like coin sound"), |
|
("user", "User", "Load a custom sound file"), |
|
}, |
|
default="ding", |
|
) |
|
|
|
default_folder = os.path.join( |
|
os.path.dirname(os.path.abspath(__file__)), "sounds", "*.wav" |
|
) |
|
if default_folder not in sys.path: |
|
sys.path.append(default_folder) |
|
usersound: StringProperty( |
|
name="User", |
|
description="Load a custom sound from your computer", |
|
subtype="FILE_PATH", |
|
default=default_folder, |
|
maxlen=1024, |
|
) |
|
|
|
playsound: BoolProperty( |
|
name="Audio Notification", |
|
default=True, |
|
) |
|
|
|
movie_model_card: bpy.props.EnumProperty( |
|
name="Video Model", |
|
items=[ |
|
("strangeman3107/animov-0.1.1", "Animov (448x384)", "Animov (448x384)"), |
|
("strangeman3107/animov-512x", "Animov (512x512)", "Animov (512x512)"), |
|
("camenduru/potat1", "Potat v1 (1024x576)", "Potat (1024x576)"), |
|
( |
|
"cerspense/zeroscope_v2_dark_30x448x256", |
|
"Zeroscope (448x256x30)", |
|
"Zeroscope (448x256x30)", |
|
), |
|
( |
|
"cerspense/zeroscope_v2_576w", |
|
"Zeroscope (576x320x24)", |
|
"Zeroscope (576x320x24)", |
|
), |
|
( |
|
"cerspense/zeroscope_v2_XL", |
|
"Zeroscope XL (1024x576x24)", |
|
"Zeroscope XL (1024x576x24)", |
|
), |
|
( |
|
"stabilityai/stable-diffusion-xl-base-1.0", |
|
"Img2img SD XL 1.0 Refine (1024x1024)", |
|
"Stable Diffusion XL 1.0", |
|
), |
|
], |
|
default="cerspense/zeroscope_v2_576w", |
|
update=input_strips_updated, |
|
) |
|
|
|
image_model_card: bpy.props.EnumProperty( |
|
name="Image Model", |
|
items=[ |
|
( |
|
"runwayml/stable-diffusion-v1-5", |
|
"Stable Diffusion 1.5 (512x512)", |
|
"Stable Diffusion 1.5", |
|
), |
|
( |
|
"stabilityai/stable-diffusion-2", |
|
"Stable Diffusion 2 (768x768)", |
|
"Stable Diffusion 2", |
|
), |
|
( |
|
"stabilityai/stable-diffusion-xl-base-1.0", |
|
"Stable Diffusion XL 1.0 (1024x1024)", |
|
"Stable Diffusion XL 1.0", |
|
), |
|
("DeepFloyd/IF-I-M-v1.0", "DeepFloyd/IF-I-M-v1.0", "DeepFloyd"), |
|
], |
|
default="stabilityai/stable-diffusion-xl-base-1.0", |
|
) |
|
|
|
audio_model_card: bpy.props.EnumProperty( |
|
name="Audio Model", |
|
items=[ |
|
( |
|
"cvssp/audioldm2", |
|
"Sound - AudioLDM 2", |
|
"Sound - AudioLDM 2", |
|
), |
|
( |
|
"cvssp/audioldm2-music", |
|
"Music - AudioLDM 2", |
|
"Music - AudioLDM 2", |
|
), |
|
("bark", "Bark", "Bark"), |
|
# ("facebook/audiogen-medium", "AudioGen", "AudioGen"), #I do not have enough VRAM to test if this is working... |
|
], |
|
default="bark", |
|
) |
|
|
|
hugginface_token: bpy.props.StringProperty( |
|
name="Hugginface Token", |
|
default="hugginface_token", |
|
subtype="PASSWORD", |
|
) |
|
|
|
generator_ai: StringProperty( |
|
name="Filepath", |
|
description="Path to the folder where the generated files are stored", |
|
subtype="DIR_PATH", |
|
default=join(bpy.utils.user_resource("DATAFILES"), "Generator AI"), |
|
) |
|
|
|
use_strip_data: BoolProperty( |
|
name="Use Input Strip Data", |
|
default=True, |
|
) |
|
|
|
def draw(self, context): |
|
layout = self.layout |
|
box = layout.box() |
|
row = box.row() |
|
row.operator("sequencer.install_generator") |
|
row.operator("sequencer.uninstall_generator") |
|
box.prop(self, "movie_model_card") |
|
box.prop(self, "image_model_card") |
|
if self.image_model_card == "DeepFloyd/IF-I-M-v1.0": |
|
row = box.row(align=True) |
|
row.prop(self, "hugginface_token") |
|
row.operator( |
|
"wm.url_open", text="", icon="URL" |
|
).url = "https://huggingface.co/settings/tokens" |
|
box.prop(self, "audio_model_card") |
|
box.prop(self, "generator_ai") |
|
row = box.row(align=True) |
|
row.label(text="Notification:") |
|
row.prop(self, "playsound", text="") |
|
sub_row = row.row() |
|
sub_row.prop(self, "soundselect", text="") |
|
if self.soundselect == "user": |
|
sub_row.prop(self, "usersound", text="") |
|
sub_row.operator("renderreminder.play_notification", text="", icon="PLAY") |
|
sub_row.active = self.playsound |
|
|
|
row_row = box.row(align=True) |
|
row_row.label(text="Use Input Strip Data:") |
|
row_row.prop(self, "use_strip_data", text="") |
|
row_row.label(text="") |
|
row_row.label(text="") |
|
row_row.label(text="") |
|
|
|
|
|
class GENERATOR_OT_install(Operator): |
|
"""Install all dependencies""" |
|
|
|
bl_idname = "sequencer.install_generator" |
|
bl_label = "Install Dependencies" |
|
bl_options = {"REGISTER", "UNDO"} |
|
|
|
def execute(self, context): |
|
preferences = context.preferences |
|
addon_prefs = preferences.addons[__name__].preferences |
|
install_modules(self) |
|
self.report( |
|
{"INFO"}, |
|
"Installation of dependencies is finished.", |
|
) |
|
return {"FINISHED"} |
|
|
|
|
|
class GENERATOR_OT_uninstall(Operator): |
|
"""Uninstall all dependencies""" |
|
|
|
bl_idname = "sequencer.uninstall_generator" |
|
bl_label = "Uninstall Dependencies" |
|
bl_options = {"REGISTER", "UNDO"} |
|
|
|
def execute(self, context): |
|
preferences = context.preferences |
|
addon_prefs = preferences.addons[__name__].preferences |
|
|
|
uninstall_module_with_dependencies("torch") |
|
uninstall_module_with_dependencies("torchvision") |
|
uninstall_module_with_dependencies("torchaudio") |
|
|
|
if os_platform == "Darwin" or os_platform == "Linux": |
|
uninstall_module_with_dependencies("sox") |
|
else: |
|
uninstall_module_with_dependencies("PySoundFile") |
|
uninstall_module_with_dependencies("diffusers") |
|
uninstall_module_with_dependencies("accelerate") |
|
uninstall_module_with_dependencies("transformers") |
|
uninstall_module_with_dependencies("sentencepiece") |
|
uninstall_module_with_dependencies("safetensors") |
|
uninstall_module_with_dependencies("opencv_python") |
|
uninstall_module_with_dependencies("scipy") |
|
uninstall_module_with_dependencies("IPython") |
|
uninstall_module_with_dependencies("bark") |
|
uninstall_module_with_dependencies("xformers") |
|
uninstall_module_with_dependencies("imageio") |
|
uninstall_module_with_dependencies("invisible-watermark") |
|
uninstall_module_with_dependencies("pillow") |
|
|
|
self.report( |
|
{"INFO"}, |
|
"\nRemove AI Models manually: \nLinux and macOS: ~/.cache/huggingface/transformers\nWindows: %userprofile%.cache\\huggingface\\transformers", |
|
) |
|
return {"FINISHED"} |
|
|
|
|
|
class GENERATOR_OT_sound_notification(Operator): |
|
"""Test your notification settings""" |
|
|
|
bl_idname = "renderreminder.play_notification" |
|
bl_label = "Test Notification" |
|
bl_options = {"REGISTER", "UNDO"} |
|
|
|
def execute(self, context): |
|
preferences = context.preferences |
|
addon_prefs = preferences.addons[__name__].preferences |
|
if addon_prefs.playsound: |
|
device = aud.Device() |
|
|
|
def coinSound(): |
|
sound = aud.Sound("") |
|
handle = device.play( |
|
sound.triangle(1000) |
|
.highpass(20) |
|
.lowpass(2000) |
|
.ADSR(0, 0.5, 1, 0) |
|
.fadeout(0.1, 0.1) |
|
.limit(0, 1) |
|
) |
|
|
|
handle = device.play( |
|
sound.triangle(1500) |
|
.highpass(20) |
|
.lowpass(2000) |
|
.ADSR(0, 0.5, 1, 0) |
|
.fadeout(0.2, 0.2) |
|
.delay(0.1) |
|
.limit(0, 1) |
|
) |
|
|
|
def ding(): |
|
sound = aud.Sound("") |
|
handle = device.play( |
|
sound.triangle(3000) |
|
.highpass(20) |
|
.lowpass(1000) |
|
.ADSR(0, 0.5, 1, 0) |
|
.fadeout(0, 1) |
|
.limit(0, 1) |
|
) |
|
|
|
if addon_prefs.soundselect == "ding": |
|
ding() |
|
if addon_prefs.soundselect == "coin": |
|
coinSound() |
|
if addon_prefs.soundselect == "user": |
|
file = str(addon_prefs.usersound) |
|
if os.path.isfile(file): |
|
sound = aud.Sound(file) |
|
handle = device.play(sound) |
|
return {"FINISHED"} |
|
|
|
|
|
class SEQEUNCER_PT_generate_ai(Panel): # UI |
|
"""Generate Media using AI""" |
|
|
|
bl_idname = "SEQUENCER_PT_sequencer_generate_movie_panel" |
|
bl_label = "Generative AI" |
|
bl_space_type = "SEQUENCE_EDITOR" |
|
bl_region_type = "UI" |
|
bl_category = "Generative AI" |
|
|
|
@classmethod |
|
def poll(cls, context): |
|
return context.area.type == 'SEQUENCE_EDITOR' |
|
|
|
def draw(self, context): |
|
preferences = context.preferences |
|
addon_prefs = preferences.addons[__name__].preferences |
|
audio_model_card = addon_prefs.audio_model_card |
|
movie_model_card = addon_prefs.movie_model_card |
|
image_model_card = addon_prefs.image_model_card |
|
|
|
scene = context.scene |
|
type = scene.generatorai_typeselect |
|
input = scene.input_strips |
|
|
|
layout = self.layout |
|
col = layout.column(align=False) |
|
col.use_property_split = True |
|
col.use_property_decorate = False |
|
|
|
if type != "audio": |
|
col = col.box() |
|
col = col.column() |
|
|
|
col.prop(context.scene, "input_strips", text="Input") |
|
|
|
if input == "input_strips" and not scene.inpaint_selected_strip: |
|
col.prop(context.scene, "image_power", text="Strip Power") |
|
|
|
if bpy.context.scene.sequence_editor is not None: |
|
if len(bpy.context.scene.sequence_editor.sequences) > 0: |
|
if input == "input_strips" and type == "image": |
|
col.prop_search(scene, "inpaint_selected_strip", scene.sequence_editor, "sequences", text="Inpaint Mask", icon='SEQ_STRIP_DUPLICATE') |
|
|
|
col = layout.column(align=True) |
|
col = col.box() |
|
col = col.column(align=True) |
|
col.use_property_split = False |
|
col.use_property_decorate = False |
|
col.prop(context.scene, "generate_movie_prompt", text="", icon="ADD") |
|
|
|
if type == "audio" and audio_model_card == "bark": |
|
pass |
|
else: |
|
col.prop( |
|
context.scene, "generate_movie_negative_prompt", text="", icon="REMOVE") |
|
|
|
layout = col.column() |
|
layout.use_property_split = True |
|
layout.use_property_decorate = False |
|
col = layout.column(align=True) |
|
|
|
if type != "audio": |
|
col.prop(context.scene, "generatorai_styles", text="Style") |
|
|
|
if type == "movie" or type == "image": |
|
col = layout.column(align=True) |
|
col.prop(context.scene, "generate_movie_x", text="X") |
|
col.prop(context.scene, "generate_movie_y", text="Y") |
|
|
|
col = layout.column(align=True) |
|
|
|
if type == "movie" or type == "image": |
|
col.prop(context.scene, "generate_movie_frames", text="Frames") |
|
|
|
if type == "audio" and audio_model_card != "bark": |
|
col.prop(context.scene, "audio_length_in_f", text="Frames") |
|
|
|
if type == "audio" and audio_model_card == "bark": |
|
col = layout.column(align=True) |
|
col.prop(context.scene, "speakers", text="Speaker") |
|
col.prop(context.scene, "languages", text="Language") |
|
else: |
|
col.prop(context.scene, "movie_num_inference_steps", text="Quality Steps") |
|
col.prop(context.scene, "movie_num_guidance", text="Word Power") |
|
|
|
col = col.column() |
|
row = col.row(align=True) |
|
sub_row = row.row(align=True) |
|
sub_row.prop(context.scene, "movie_num_seed", text="Seed") |
|
row.prop(context.scene, "movie_use_random", text="", icon="QUESTION") |
|
sub_row.active = not context.scene.movie_use_random |
|
|
|
layout = self.layout |
|
layout.use_property_split = True |
|
layout.use_property_decorate = False |
|
col = layout.column(align=True) |
|
col = col.box() |
|
|
|
col.prop(context.scene, "generatorai_typeselect", text="Output") |
|
|
|
if type == "movie" and ( |
|
movie_model_card == "cerspense/zeroscope_v2_dark_30x448x256" |
|
or movie_model_card == "cerspense/zeroscope_v2_576w" |
|
or movie_model_card == "cerspense/zeroscope_v2_XL" |
|
): |
|
col = col.column(heading="Upscale", align=True) |
|
col.prop(context.scene, "video_to_video", text="2x") |
|
|
|
if type == "image":# and ( |
|
#image_model_card == "stabilityai/stable-diffusion-xl-base-1.0" |
|
#): |
|
col = col.column(heading="Refine", align=True) |
|
col.prop(context.scene, "refine_sd", text="Image") |
|
sub_col = col.row() |
|
sub_col.active = context.scene.refine_sd |
|
|
|
col.prop(context.scene, "movie_num_batch", text="Batch Count") |
|
|
|
col = layout.column() |
|
col = col.box() |
|
|
|
if input == "input_strips": |
|
ed = scene.sequence_editor |
|
|
|
row = col.row(align=True) |
|
row.scale_y = 1.2 |
|
row.operator("sequencer.text_to_generator", text="Generate from Strips") |
|
else: |
|
row = col.row(align=True) |
|
row.scale_y = 1.2 |
|
if type == "movie": |
|
if movie_model_card == "stabilityai/stable-diffusion-xl-base-1.0": |
|
row.operator("sequencer.text_to_generator", text="Generate from Strips") |
|
else: |
|
row.operator("sequencer.generate_movie", text="Generate") |
|
|
|
if type == "image": |
|
row.operator("sequencer.generate_image", text="Generate") |
|
|
|
if type == "audio": |
|
row.operator("sequencer.generate_audio", text="Generate") |
|
|
|
|
|
class NoWatermark: |
|
def apply_watermark(self, img): |
|
return img |
|
|
|
|
|
class SEQUENCER_OT_generate_movie(Operator): |
|
"""Generate Video""" |
|
|
|
bl_idname = "sequencer.generate_movie" |
|
bl_label = "Prompt" |
|
bl_description = "Convert text to video" |
|
bl_options = {"REGISTER", "UNDO"} |
|
|
|
def execute(self, context): |
|
scene = context.scene |
|
|
|
if not scene.generate_movie_prompt: |
|
self.report({"INFO"}, "Text prompt in the Generative AI tab is empty!") |
|
return {"CANCELLED"} |
|
|
|
try: |
|
import torch |
|
from diffusers.utils import export_to_video |
|
from PIL import Image |
|
Image.MAX_IMAGE_PIXELS = None |
|
import numpy as np |
|
except ModuleNotFoundError: |
|
print("In the add-on preferences, install dependencies.") |
|
self.report( |
|
{"INFO"}, |
|
"In the add-on preferences, install dependencies.", |
|
) |
|
return {"CANCELLED"} |
|
|
|
show_system_console(True) |
|
set_system_console_topmost(True) |
|
|
|
seq_editor = scene.sequence_editor |
|
|
|
if not seq_editor: |
|
scene.sequence_editor_create() |
|
|
|
# clear the VRAM |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
current_frame = scene.frame_current |
|
prompt = style_prompt(scene.generate_movie_prompt)[0] |
|
negative_prompt = scene.generate_movie_negative_prompt +", "+ style_prompt(scene.generate_movie_prompt)[1] +", nsfw nude nudity" |
|
movie_x = scene.generate_movie_x |
|
movie_y = scene.generate_movie_y |
|
x = scene.generate_movie_x = closest_divisible_64(movie_x) |
|
y = scene.generate_movie_y = closest_divisible_64(movie_y) |
|
duration = scene.generate_movie_frames |
|
movie_num_inference_steps = scene.movie_num_inference_steps |
|
movie_num_guidance = scene.movie_num_guidance |
|
input = scene.input_strips |
|
|
|
preferences = context.preferences |
|
addon_prefs = preferences.addons[__name__].preferences |
|
movie_model_card = addon_prefs.movie_model_card |
|
image_model_card = addon_prefs.image_model_card |
|
|
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
# LOADING MODELS |
|
print("Model: " + movie_model_card) |
|
|
|
# Models for refine imported image or movie |
|
if (scene.movie_path or scene.image_path) and input == "input_strips": |
|
|
|
if movie_model_card == "stabilityai/stable-diffusion-xl-base-1.0": #img2img |
|
from diffusers import StableDiffusionXLImg2ImgPipeline, AutoencoderKL |
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) |
|
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained( |
|
movie_model_card, |
|
torch_dtype=torch.float16, |
|
variant="fp16", |
|
vae=vae, |
|
) |
|
|
|
from diffusers import DPMSolverMultistepScheduler |
|
|
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config( |
|
pipe.scheduler.config |
|
) |
|
|
|
pipe.watermark = NoWatermark() |
|
|
|
if low_vram: |
|
pipe.enable_model_cpu_offload() |
|
#pipe.unet.enable_forward_chunking(chunk_size=1, dim=1) # Heavy |
|
pipe.enable_vae_slicing() |
|
else: |
|
pipe.to("cuda") |
|
|
|
from diffusers import StableDiffusionXLImg2ImgPipeline |
|
|
|
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-refiner-1.0", |
|
text_encoder_2=pipe.text_encoder_2, |
|
vae=pipe.vae, |
|
torch_dtype=torch.float16, |
|
variant="fp16", |
|
) |
|
|
|
if low_vram: |
|
refiner.enable_model_cpu_offload() |
|
refiner.enable_vae_tiling() |
|
refiner.enable_vae_slicing() |
|
else: |
|
refiner.to("cuda") |
|
|
|
# elif scene.image_path: #img2vid |
|
|
|
# from modelscope.pipelines import pipeline |
|
# from modelscope.outputs import OutputKeys |
|
|
|
#pipe = pipeline(task='image-to-video', model='damo-vilab/MS-Image2Video', model_revision='v1.1.0') |
|
#pipe = pipeline(task='image-to-video', model='damo/Image-to-Video', model_revision='v1.1.0') |
|
#pipe = pipeline(task='image-to-video', model='https://dagshub.com/model/damo-video-to-video/src/main/data', model_revision='v1.1.0') |
|
|
|
# if low_vram: |
|
# pipe.enable_model_cpu_offload() |
|
# pipe.enable_vae_tiling() |
|
# pipe.enable_vae_slicing() |
|
# else: |
|
# pipe.to("cuda") |
|
|
|
else: # vid2vid / img2vid |
|
if movie_model_card == "cerspense/zeroscope_v2_dark_30x448x256" or movie_model_card == "cerspense/zeroscope_v2_576w" or scene.image_path: |
|
card = "cerspense/zeroscope_v2_XL" |
|
else: |
|
card = movie_model_card |
|
|
|
from diffusers import VideoToVideoSDPipeline |
|
upscale = VideoToVideoSDPipeline.from_pretrained( |
|
card, |
|
torch_dtype=torch.float16, |
|
#use_safetensors=True, |
|
) |
|
|
|
from diffusers import DPMSolverMultistepScheduler |
|
|
|
upscale.scheduler = DPMSolverMultistepScheduler.from_config(upscale.scheduler.config) |
|
|
|
if low_vram: |
|
#torch.cuda.set_per_process_memory_fraction(0.98) |
|
upscale.enable_model_cpu_offload() |
|
upscale.enable_vae_tiling() |
|
upscale.unet.enable_forward_chunking(chunk_size=1, dim=1) # heavy: |
|
upscale.enable_vae_slicing() |
|
else: |
|
upscale.to("cuda") |
|
|
|
# Models for movie generation |
|
else: |
|
from diffusers import TextToVideoSDPipeline |
|
|
|
pipe = TextToVideoSDPipeline.from_pretrained( |
|
movie_model_card, |
|
torch_dtype=torch.float16, |
|
use_safetensors=False, |
|
) |
|
from diffusers import DPMSolverMultistepScheduler |
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) |
|
|
|
if low_vram: |
|
pipe.enable_model_cpu_offload() |
|
pipe.enable_vae_slicing() |
|
else: |
|
pipe.to("cuda") |
|
|
|
# Model for upscale generated movie |
|
if scene.video_to_video: |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
from diffusers import DiffusionPipeline |
|
upscale = DiffusionPipeline.from_pretrained( |
|
"cerspense/zeroscope_v2_XL", torch_dtype=torch.float16, |
|
use_safetensors=False, |
|
) |
|
|
|
upscale.scheduler = DPMSolverMultistepScheduler.from_config(upscale.scheduler.config) |
|
|
|
if low_vram: |
|
upscale.enable_model_cpu_offload() |
|
# upscale.unet.enable_forward_chunking(chunk_size=1, dim=1) #Heavy |
|
upscale.enable_vae_slicing() |
|
else: |
|
upscale.to("cuda") |
|
|
|
|
|
# GENERATING |
|
|
|
# Main Loop |
|
for i in range(scene.movie_num_batch): |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
if i > 0: |
|
empty_channel = scene.sequence_editor.active_strip.channel |
|
start_frame = ( |
|
scene.sequence_editor.active_strip.frame_final_start |
|
+ scene.sequence_editor.active_strip.frame_final_duration |
|
) |
|
scene.frame_current = ( |
|
scene.sequence_editor.active_strip.frame_final_start |
|
) |
|
else: |
|
empty_channel = find_first_empty_channel( |
|
scene.frame_current, |
|
(scene.movie_num_batch * duration) + scene.frame_current, |
|
) |
|
start_frame = scene.frame_current |
|
|
|
# Get seed |
|
seed = context.scene.movie_num_seed |
|
seed = ( |
|
seed |
|
if not context.scene.movie_use_random |
|
else random.randint(0, 999999) |
|
) |
|
print("Seed: "+str(seed)) |
|
context.scene.movie_num_seed = seed |
|
|
|
# Use cuda if possible |
|
if torch.cuda.is_available(): |
|
generator = ( |
|
torch.Generator("cuda").manual_seed(seed) if seed != 0 else None |
|
) |
|
else: |
|
if seed != 0: |
|
generator = torch.Generator() |
|
generator.manual_seed(seed) |
|
else: |
|
generator = None |
|
|
|
# Process batch input |
|
if (scene.movie_path or scene.image_path) and input == "input_strips": |
|
|
|
video_path = scene.movie_path |
|
|
|
# img2img |
|
if movie_model_card == "stabilityai/stable-diffusion-xl-base-1.0": |
|
print("Process: Frame by frame (SD XL)") |
|
|
|
input_video_path = video_path |
|
output_video_path = solve_path("temp_images") |
|
|
|
if scene.movie_path: |
|
frames = process_video(input_video_path, output_video_path) |
|
elif scene.image_path: |
|
frames = process_image(scene.image_path, int(scene.generate_movie_frames)) |
|
|
|
video_frames = [] |
|
|
|
# Iterate through the frames |
|
for frame_idx, frame in enumerate(frames): # would love to get this flicker free |
|
print(str(frame_idx+1) + "/" + str(len(frames))) |
|
image = refiner( |
|
prompt, |
|
negative_prompt=negative_prompt, |
|
num_inference_steps=movie_num_inference_steps, |
|
strength = 1.00 - scene.image_power, |
|
guidance_scale=movie_num_guidance, |
|
image=frame, |
|
generator=generator, |
|
).images[0] |
|
|
|
video_frames.append(image) |
|
|
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
video_frames = np.array(video_frames) |
|
|
|
# vid2vid / img2vid |
|
else: |
|
if scene.movie_path: |
|
video = load_video_as_np_array(video_path) |
|
print("Process: Video to video") |
|
|
|
elif scene.image_path: |
|
print("Process: Image to video") |
|
video = process_image(scene.image_path, int(scene.generate_movie_frames)) |
|
|
|
# Upscale video |
|
if scene.video_to_video: |
|
video = [ |
|
Image.fromarray(frame).resize((closest_divisible_64(int(x * 2)), closest_divisible_64(int(y * 2)))) |
|
for frame in video |
|
] |
|
|
|
video_frames = upscale( |
|
prompt, |
|
video=video, |
|
strength=1.00 - scene.image_power, |
|
negative_prompt=negative_prompt, |
|
num_inference_steps=movie_num_inference_steps, |
|
guidance_scale=movie_num_guidance, |
|
generator=generator, |
|
).frames |
|
|
|
# elif scene.image_path: #img2vid |
|
# print("Process: Image to video") |
|
# |
|
# # IMG_PATH: your image path (url or local file) |
|
# video_frames = pipe(scene.image_path, output_video='./output.mp4').frames |
|
# output_video_path = pipe(scene.image_path, output_video='./output.mp4')[OutputKeys.OUTPUT_VIDEO] |
|
# print(output_video_path) |
|
# |
|
# #video = process_image(scene.image_path, int(scene.generate_movie_frames)) |
|
|
|
# Upscale video |
|
# if scene.video_to_video: |
|
# video = [ |
|
# Image.fromarray(frame).resize((closest_divisible_64(int(x * 2)), closest_divisible_64(int(y * 2)))) |
|
# for frame in video |
|
# ] |
|
|
|
# video_frames = upscale( |
|
# prompt, |
|
# video=video, |
|
# strength=1.00 - scene.image_power, |
|
# negative_prompt=negative_prompt, |
|
# num_inference_steps=movie_num_inference_steps, |
|
# guidance_scale=movie_num_guidance, |
|
# generator=generator, |
|
# ).frames |
|
|
|
#video_frames = np.array(video_frames) |
|
|
|
# Generation of movie |
|
else: |
|
print("Generate: Video") |
|
video_frames = pipe( |
|
prompt, |
|
negative_prompt=negative_prompt, |
|
num_inference_steps=movie_num_inference_steps, |
|
guidance_scale=movie_num_guidance, |
|
height=y, |
|
width=x, |
|
num_frames=duration, |
|
generator=generator, |
|
).frames |
|
|
|
movie_model_card = addon_prefs.movie_model_card |
|
|
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
# Upscale video |
|
if scene.video_to_video: |
|
print("Upscale: Video") |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
video = [Image.fromarray(frame).resize((closest_divisible_64(x * 2), closest_divisible_64(y * 2))) for frame in video_frames] |
|
|
|
video_frames = upscale( |
|
prompt, |
|
video=video, |
|
strength=1.00 - scene.image_power, |
|
negative_prompt=negative_prompt, |
|
num_inference_steps=movie_num_inference_steps, |
|
guidance_scale=movie_num_guidance, |
|
generator=generator, |
|
).frames |
|
|
|
# Move to folder |
|
src_path = export_to_video(video_frames) |
|
dst_path = solve_path(clean_filename(str(seed)+"_"+prompt)+".mp4") |
|
shutil.move(src_path, dst_path) |
|
|
|
# Add strip |
|
if not os.path.isfile(dst_path): |
|
print("No resulting file found.") |
|
return {"CANCELLED"} |
|
|
|
for window in bpy.context.window_manager.windows: |
|
screen = window.screen |
|
for area in screen.areas: |
|
if area.type == "SEQUENCE_EDITOR": |
|
from bpy import context |
|
|
|
with context.temp_override(window=window, area=area): |
|
bpy.ops.sequencer.movie_strip_add( |
|
filepath=dst_path, |
|
frame_start=start_frame, |
|
channel=empty_channel, |
|
fit_method="FIT", |
|
adjust_playback_rate=True, |
|
sound=False, |
|
use_framerate=False, |
|
) |
|
strip = scene.sequence_editor.active_strip |
|
strip.transform.filter = "SUBSAMPLING_3x3" |
|
scene.sequence_editor.active_strip = strip |
|
strip.name = str(seed) + "_" + prompt |
|
strip.use_proxy = True |
|
bpy.ops.sequencer.rebuild_proxy() |
|
|
|
if i > 0: |
|
scene.frame_current = ( |
|
scene.sequence_editor.active_strip.frame_final_start |
|
) |
|
|
|
# Redraw UI to display the new strip. Remove this if Blender crashes: https://docs.blender.org/api/current/info_gotcha.html#can-i-redraw-during-script-execution |
|
bpy.ops.wm.redraw_timer(type="DRAW_WIN_SWAP", iterations=1) |
|
break |
|
# clear the VRAM |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
bpy.types.Scene.movie_path = "" |
|
bpy.ops.renderreminder.play_notification() |
|
scene.frame_current = current_frame |
|
|
|
return {"FINISHED"} |
|
|
|
|
|
class SEQUENCER_OT_generate_audio(Operator): |
|
"""Generate Audio""" |
|
|
|
bl_idname = "sequencer.generate_audio" |
|
bl_label = "Prompt" |
|
bl_description = "Convert text to audio" |
|
bl_options = {"REGISTER", "UNDO"} |
|
|
|
def execute(self, context): |
|
scene = context.scene |
|
|
|
if not scene.generate_movie_prompt: |
|
self.report({"INFO"}, "Text prompt in the Generative AI tab is empty!") |
|
return {"CANCELLED"} |
|
|
|
if not scene.sequence_editor: |
|
scene.sequence_editor_create() |
|
|
|
preferences = context.preferences |
|
addon_prefs = preferences.addons[__name__].preferences |
|
|
|
current_frame = scene.frame_current |
|
prompt = scene.generate_movie_prompt |
|
negative_prompt = scene.generate_movie_negative_prompt |
|
movie_num_inference_steps = scene.movie_num_inference_steps |
|
movie_num_guidance = scene.movie_num_guidance |
|
audio_length_in_s = scene.audio_length_in_f / ( |
|
scene.render.fps / scene.render.fps_base |
|
) |
|
|
|
try: |
|
import torch |
|
|
|
if addon_prefs.audio_model_card == "cvssp/audioldm2" or addon_prefs.audio_model_card == "cvssp/audioldm2-music": |
|
from diffusers import AudioLDM2Pipeline, DPMSolverMultistepScheduler |
|
import scipy |
|
from IPython.display import Audio |
|
from scipy.io.wavfile import write as write_wav |
|
import xformers |
|
|
|
if addon_prefs.audio_model_card == "facebook/audiogen-medium": |
|
import torchaudio |
|
from audiocraft.models import AudioGen |
|
from audiocraft.data.audio import audio_write |
|
from scipy.io.wavfile import write as write_wav |
|
|
|
if addon_prefs.audio_model_card == "bark": |
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0" |
|
import numpy as np |
|
from bark.generation import ( |
|
generate_text_semantic, |
|
preload_models, |
|
) |
|
from bark.api import semantic_to_waveform |
|
from bark import generate_audio, SAMPLE_RATE |
|
from scipy.io.wavfile import write as write_wav |
|
|
|
except ModuleNotFoundError: |
|
print("Dependencies needs to be installed in the add-on preferences.") |
|
self.report( |
|
{"INFO"}, |
|
"Dependencies needs to be installed in the add-on preferences.", |
|
) |
|
return {"CANCELLED"} |
|
|
|
show_system_console(True) |
|
set_system_console_topmost(True) |
|
|
|
# clear the VRAM |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
print("Model: " + addon_prefs.audio_model_card) |
|
|
|
if addon_prefs.audio_model_card == "cvssp/audioldm2" or addon_prefs.audio_model_card == "cvssp/audioldm2-music": |
|
repo_id = addon_prefs.audio_model_card |
|
pipe = AudioLDM2Pipeline.from_pretrained(repo_id) |
|
|
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) |
|
|
|
if low_vram: |
|
pipe.enable_vae_slicing() |
|
|
|
pipe.to("cuda") |
|
|
|
elif addon_prefs.audio_model_card == "facebook/audiogen-medium": |
|
pipe = AudioGen.get_pretrained("facebook/audiogen-medium") |
|
|
|
elif addon_prefs.audio_model_card == "bark": |
|
preload_models( |
|
text_use_small=True, |
|
coarse_use_small=True, |
|
fine_use_gpu=True, |
|
fine_use_small=True, |
|
) |
|
|
|
for i in range(scene.movie_num_batch): |
|
|
|
if i > 0: |
|
empty_channel = scene.sequence_editor.active_strip.channel |
|
start_frame = ( |
|
scene.sequence_editor.active_strip.frame_final_start |
|
+ scene.sequence_editor.active_strip.frame_final_duration |
|
) |
|
scene.frame_current = ( |
|
scene.sequence_editor.active_strip.frame_final_start |
|
) |
|
else: |
|
empty_channel = find_first_empty_channel( |
|
scene.frame_current, |
|
100000000000000000000, |
|
) |
|
start_frame = scene.frame_current |
|
|
|
if addon_prefs.audio_model_card == "bark": |
|
print("Generate: Speech (Bark)") |
|
rate = 24000 |
|
GEN_TEMP = 0.6 |
|
SPEAKER = "v2/" + scene.languages + "_" + scene.speakers |
|
silence = np.zeros(int(0.25 * rate)) # quarter second of silence |
|
|
|
prompt = context.scene.generate_movie_prompt |
|
prompt = prompt.replace("\n", " ").strip() |
|
|
|
sentences = split_and_recombine_text( |
|
prompt, desired_length=90, max_length=150 |
|
) |
|
|
|
pieces = [] |
|
for sentence in sentences: |
|
print("Sentence: "+sentence) |
|
semantic_tokens = generate_text_semantic( |
|
sentence, |
|
history_prompt=SPEAKER, |
|
temp=GEN_TEMP, |
|
# min_eos_p=0.1, # this controls how likely the generation is to end |
|
) |
|
|
|
audio_array = semantic_to_waveform( |
|
semantic_tokens, history_prompt=SPEAKER |
|
) |
|
pieces += [audio_array, silence.copy()] |
|
|
|
audio = np.concatenate(pieces) |
|
filename = solve_path(clean_filename(prompt + ".wav")) |
|
|
|
# Write the combined audio to a file |
|
write_wav(filename, rate, audio.transpose()) |
|
|
|
else: # AudioLDM |
|
print("Generate: Audio/music (AudioLDM)") |
|
seed = context.scene.movie_num_seed |
|
seed = ( |
|
seed |
|
if not context.scene.movie_use_random |
|
else random.randint(0, 999999) |
|
) |
|
print("Seed: "+str(seed)) |
|
context.scene.movie_num_seed = seed |
|
|
|
# Use cuda if possible |
|
if torch.cuda.is_available(): |
|
generator = ( |
|
torch.Generator("cuda").manual_seed(seed) if seed != 0 else None |
|
) |
|
else: |
|
if seed != 0: |
|
generator = torch.Generator() |
|
generator.manual_seed(seed) |
|
else: |
|
generator = None |
|
prompt = context.scene.generate_movie_prompt |
|
print("Processing: "+prompt) |
|
print("Seed: "+str(seed)) |
|
|
|
audio = pipe( |
|
prompt, |
|
num_inference_steps=movie_num_inference_steps, |
|
audio_length_in_s=audio_length_in_s, |
|
guidance_scale=movie_num_guidance, |
|
generator=generator, |
|
).audios[0] |
|
rate = 16000 |
|
|
|
filename = solve_path(str(seed) +"_"+ prompt + ".wav") |
|
|
|
write_wav(filename, rate, audio.transpose()) |
|
|
|
filepath = filename |
|
if os.path.isfile(filepath): |
|
empty_channel = empty_channel |
|
strip = scene.sequence_editor.sequences.new_sound( |
|
name=prompt, |
|
filepath=filepath, |
|
channel=empty_channel, |
|
frame_start=start_frame, |
|
) |
|
scene.sequence_editor.active_strip = strip |
|
if i > 0: |
|
scene.frame_current = ( |
|
scene.sequence_editor.active_strip.frame_final_start |
|
) |
|
|
|
# Redraw UI to display the new strip. Remove this if Blender crashes: |
|
# https://docs.blender.org/api/current/info_gotcha.html#can-i-redraw-during-script-execution |
|
bpy.ops.wm.redraw_timer(type="DRAW_WIN_SWAP", iterations=1) |
|
else: |
|
print("No resulting file found!") |
|
|
|
# clear the VRAM |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
bpy.ops.renderreminder.play_notification() |
|
|
|
return {"FINISHED"} |
|
|
|
|
|
def find_strip_by_name(scene, name): |
|
for sequence in scene.sequence_editor.sequences: |
|
if sequence.name == name: |
|
return sequence |
|
return None |
|
|
|
|
|
def get_strip_path(strip): |
|
if strip.type == "IMAGE": |
|
strip_dirname = os.path.dirname(strip.directory) |
|
image_path = bpy.path.abspath( |
|
os.path.join(strip_dirname, strip.elements[0].filename) |
|
) |
|
return image_path |
|
if strip.type == "MOVIE": |
|
movie_path = bpy.path.abspath(strip.filepath) |
|
return movie_path |
|
return None |
|
|
|
|
|
class SEQUENCER_OT_generate_image(Operator): |
|
"""Generate Image""" |
|
|
|
bl_idname = "sequencer.generate_image" |
|
bl_label = "Prompt" |
|
bl_description = "Convert text to image" |
|
bl_options = {"REGISTER", "UNDO"} |
|
|
|
def execute(self, context): |
|
scene = context.scene |
|
if scene.generate_movie_prompt == "": |
|
self.report({"INFO"}, "Text prompt in the Generative AI tab is empty!") |
|
return {"CANCELLED"} |
|
show_system_console(True) |
|
set_system_console_topmost(True) |
|
|
|
scene = context.scene |
|
seq_editor = scene.sequence_editor |
|
|
|
if not seq_editor: |
|
scene.sequence_editor_create() |
|
try: |
|
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler |
|
from diffusers.utils import pt_to_pil |
|
import torch |
|
import requests |
|
from diffusers.utils import load_image |
|
import numpy as np |
|
import PIL |
|
except ModuleNotFoundError: |
|
print("Dependencies needs to be installed in the add-on preferences.") |
|
self.report( |
|
{"INFO"}, |
|
"Dependencies needs to be installed in the add-on preferences.", |
|
) |
|
return {"CANCELLED"} |
|
|
|
# clear the VRAM |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
current_frame = scene.frame_current |
|
type = scene.generatorai_typeselect |
|
input = scene.input_strips |
|
prompt = style_prompt(scene.generate_movie_prompt)[0] |
|
negative_prompt = scene.generate_movie_negative_prompt +", "+ style_prompt(scene.generate_movie_prompt)[1] +", nsfw, nude, nudity," |
|
image_x = scene.generate_movie_x |
|
image_y = scene.generate_movie_y |
|
x = scene.generate_movie_x = closest_divisible_64(image_x) |
|
y = scene.generate_movie_y = closest_divisible_64(image_y) |
|
duration = scene.generate_movie_frames |
|
image_num_inference_steps = scene.movie_num_inference_steps |
|
image_num_guidance = scene.movie_num_guidance |
|
|
|
preferences = context.preferences |
|
addon_prefs = preferences.addons[__name__].preferences |
|
image_model_card = addon_prefs.image_model_card |
|
do_inpaint = input == "input_strips" and scene.inpaint_selected_strip and type == "image" |
|
do_refine = (scene.refine_sd or scene.image_path or image_model_card == "stabilityai/stable-diffusion-xl-base-1.0") #and not do_inpaint |
|
|
|
# LOADING MODELS |
|
print("Model: " + image_model_card) |
|
|
|
# models for inpaint |
|
if do_inpaint: |
|
|
|
#from diffusers import StableDiffusionXLInpaintPipeline, AutoencoderKL |
|
from diffusers import StableDiffusionInpaintPipeline#, AutoencoderKL#, StableDiffusionXLInpaintPipeline |
|
#from diffusers import AutoPipelineForInpainting #, AutoencoderKL, StableDiffusionXLInpaintPipeline |
|
from diffusers.utils import load_image |
|
|
|
# clear the VRAM |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
# vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) #vae=vae, |
|
#pipe = StableDiffusionXLInpaintPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16") #use_safetensors=True |
|
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16") #use_safetensors=True |
|
#pipe = AutoPipelineForInpainting.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype=torch.float16, variant="fp16") #use_safetensors=True |
|
|
|
pipe.watermark = NoWatermark() |
|
|
|
if low_vram: |
|
#torch.cuda.set_per_process_memory_fraction(0.99) |
|
pipe.enable_model_cpu_offload() |
|
#pipe.enable_vae_slicing() |
|
#pipe.enable_forward_chunking(chunk_size=1, dim=1) |
|
else: |
|
pipe.to("cuda") |
|
|
|
# refiner = StableDiffusionXLInpaintPipeline.from_pretrained( |
|
# "stabilityai/stable-diffusion-xl-refiner-1.0", |
|
# text_encoder_2=pipe.text_encoder_2, |
|
# vae = vae, |
|
# #vae=pipe.vae, |
|
# torch_dtype=torch.float16, |
|
# use_safetensors=True, |
|
# variant="fp16", |
|
# ) |
|
# if low_vram: |
|
# refiner.enable_model_cpu_offload() |
|
# refiner.enable_vae_slicing() |
|
# else: |
|
# refiner.to("cuda") |
|
|
|
|
|
# Models for stable diffusion |
|
elif not image_model_card == "DeepFloyd/IF-I-M-v1.0": |
|
from diffusers import AutoencoderKL |
|
if image_model_card == "stabilityai/stable-diffusion-xl-base-1.0": |
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) |
|
pipe = DiffusionPipeline.from_pretrained( |
|
image_model_card, |
|
vae=vae, |
|
torch_dtype=torch.float16, |
|
variant="fp16", |
|
) |
|
else: |
|
pipe = DiffusionPipeline.from_pretrained( |
|
image_model_card, |
|
torch_dtype=torch.float16, |
|
variant="fp16", |
|
) |
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) |
|
|
|
if low_vram: |
|
#torch.cuda.set_per_process_memory_fraction(0.95) # 6 GB VRAM |
|
pipe.enable_model_cpu_offload() |
|
pipe.enable_vae_slicing() |
|
else: |
|
pipe.to("cuda") |
|
|
|
# DeepFloyd |
|
elif image_model_card == "DeepFloyd/IF-I-M-v1.0": |
|
from huggingface_hub.commands.user import login |
|
|
|
result = login(token=addon_prefs.hugginface_token) |
|
|
|
# torch.cuda.set_per_process_memory_fraction(0.85) # 6 GB VRAM |
|
|
|
# stage 1 |
|
stage_1 = DiffusionPipeline.from_pretrained( |
|
"DeepFloyd/IF-I-M-v1.0", variant="fp16", torch_dtype=torch.float16 |
|
) |
|
if low_vram: |
|
stage_1.enable_model_cpu_offload() |
|
# here: stage_1.unet.enable_forward_chunking(chunk_size=1, dim=1) |
|
stage_1.enable_vae_slicing() |
|
stage_1.enable_xformers_memory_efficient_attention() |
|
else: |
|
stage_1.to("cuda") |
|
# stage 2 |
|
stage_2 = DiffusionPipeline.from_pretrained( |
|
"DeepFloyd/IF-II-M-v1.0", |
|
text_encoder=None, |
|
variant="fp16", |
|
torch_dtype=torch.float16, |
|
) |
|
if low_vram: |
|
stage_2.enable_model_cpu_offload() |
|
# stage_2.unet.enable_forward_chunking(chunk_size=1, dim=1) |
|
stage_2.enable_vae_slicing() |
|
stage_2.enable_xformers_memory_efficient_attention() |
|
else: |
|
stage_2.to("cuda") |
|
# stage 3 |
|
safety_modules = { |
|
"feature_extractor": stage_1.feature_extractor, |
|
"safety_checker": stage_1.safety_checker, |
|
"watermarker": stage_1.watermarker, |
|
} |
|
stage_3 = DiffusionPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-x4-upscaler", |
|
**safety_modules, |
|
torch_dtype=torch.float16, |
|
) |
|
if low_vram: |
|
stage_3.enable_model_cpu_offload() |
|
# stage_3.unet.enable_forward_chunking(chunk_size=1, dim=1) |
|
stage_3.enable_vae_slicing() |
|
stage_3.enable_xformers_memory_efficient_attention() |
|
else: |
|
stage_3.to("cuda") |
|
|
|
|
|
# Add refiner model if chosen. |
|
if do_refine: |
|
print("Refine Model: " + "stabilityai/stable-diffusion-xl-refiner-1.0") |
|
from diffusers import StableDiffusionXLImg2ImgPipeline, AutoencoderKL |
|
|
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) |
|
|
|
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-refiner-1.0", |
|
#text_encoder_2=pipe.text_encoder_2, |
|
#vae=pipe.vae, |
|
vae=vae, |
|
torch_dtype=torch.float16, |
|
variant="fp16", |
|
) |
|
|
|
refiner.watermark = NoWatermark() |
|
|
|
if low_vram: |
|
refiner.enable_model_cpu_offload() |
|
refiner.enable_vae_tiling() |
|
refiner.enable_vae_slicing() |
|
else: |
|
refiner.to("cuda") |
|
|
|
# Main Generate Loop: |
|
for i in range(scene.movie_num_batch): |
|
|
|
# Find free space for the strip in the timeline. |
|
if i > 0: |
|
empty_channel = scene.sequence_editor.active_strip.channel |
|
start_frame = ( |
|
scene.sequence_editor.active_strip.frame_final_start |
|
+ scene.sequence_editor.active_strip.frame_final_duration |
|
) |
|
scene.frame_current = ( |
|
scene.sequence_editor.active_strip.frame_final_start |
|
) |
|
else: |
|
empty_channel = find_first_empty_channel( |
|
scene.frame_current, |
|
(scene.movie_num_batch * duration) + scene.frame_current, |
|
) |
|
start_frame = scene.frame_current |
|
|
|
# Generate seed. |
|
seed = context.scene.movie_num_seed |
|
seed = ( |
|
seed |
|
if not context.scene.movie_use_random |
|
else random.randint(0, 999999) |
|
) |
|
print("Seed: "+str(seed)) |
|
context.scene.movie_num_seed = seed |
|
|
|
# Use cuda if possible. |
|
if torch.cuda.is_available(): |
|
generator = ( |
|
torch.Generator("cuda").manual_seed(seed) if seed != 0 else None |
|
) |
|
else: |
|
if seed != 0: |
|
generator = torch.Generator() |
|
generator.manual_seed(seed) |
|
else: |
|
generator = None |
|
|
|
# DeepFloyd process: |
|
if image_model_card == "DeepFloyd/IF-I-M-v1.0": |
|
prompt_embeds, negative_embeds = stage_1.encode_prompt( |
|
prompt, negative_prompt |
|
) |
|
|
|
# stage 1 |
|
image = stage_1( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_embeds, |
|
generator=generator, |
|
output_type="pt", |
|
).images |
|
pt_to_pil(image)[0].save("./if_stage_I.png") |
|
|
|
# stage 2 |
|
image = stage_2( |
|
image=image, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_embeds, |
|
generator=generator, |
|
output_type="pt", |
|
).images |
|
pt_to_pil(image)[0].save("./if_stage_II.png") |
|
|
|
# stage 3 |
|
image = stage_3( |
|
prompt=prompt, image=image, noise_level=100, generator=generator |
|
).images |
|
# image[0].save("./if_stage_III.png") |
|
image = image[0] |
|
|
|
# Inpaint |
|
elif do_inpaint: |
|
print("Process: Inpaint") |
|
|
|
mask_strip =find_strip_by_name(scene, scene.inpaint_selected_strip) |
|
if not mask_strip: |
|
return |
|
|
|
mask_path = get_strip_path(mask_strip) |
|
mask_image = load_first_frame(mask_path) |
|
if not mask_image: |
|
print("Loading mask failed!") |
|
return |
|
mask_image = mask_image.resize((x, y)) |
|
if scene.image_path: |
|
init_image = load_first_frame(scene.image_path) |
|
if scene.movie_path: |
|
init_image = load_first_frame(scene.movie_path) |
|
if not init_image: |
|
print("Loading strip failed!") |
|
return |
|
|
|
init_image = init_image.resize((x, y)) |
|
|
|
image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
image=init_image, |
|
mask_image=mask_image, |
|
num_inference_steps=image_num_inference_steps, |
|
guidance_scale=image_num_guidance, |
|
#strength=1.00 - scene.image_power, |
|
height=y, |
|
width=x, |
|
generator=generator, |
|
).images[0] |
|
|
|
|
|
# https://github.com/huggingface/diffusers/commit/5f740d0f55adec63ee2453f83f1c0d7d984e01e4 |
|
#init_image = load_image(img_url).resize((512, 512)) |
|
#mask_image = load_image(mask_url).resize((512, 512)) |
|
|
|
#repainted_image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0] |
|
#repainted_image.save("repainted_image.png") |
|
|
|
# # Convert mask to grayscale NumPy array |
|
# mask_image_arr = np.array(mask_image.convert("L")) |
|
# init_image_arr = np.array(init_image.convert("L")) |
|
# repainted_image_arr = np.array(repainted_image.convert("L")) |
|
# # Add a channel dimension to the end of the grayscale mask |
|
# mask_image_arr = mask_image_arr[:, :, None] |
|
# init_image_arr = init_image_arr[:, :, None] |
|
# repainted_image_arr = repainted_image_arr[:, :, None] |
|
# # Binarize the mask: 1s correspond to the pixels which are repainted |
|
# mask_image_arr = mask_image_arr.astype(np.float32) / 255.0 |
|
# mask_image_arr[mask_image_arr < 0.5] = 0 |
|
# mask_image_arr[mask_image_arr >= 0.5] = 1 |
|
|
|
# # Take the masked pixels from the repainted image and the unmasked pixels from the initial image |
|
# unmasked_unchanged_image_arr = (1 - mask_image_arr) * init_image_arr + mask_image_arr * repainted_image_arr |
|
# image = PIL.Image.fromarray(unmasked_unchanged_image_arr.astype("uint8")) |
|
# #unmasked_unchanged_image.save("force_unmasked_unchanged.png") |
|
|
|
|
|
# Img2img |
|
elif scene.image_path: |
|
print("Process: Image to image") |
|
init_image = load_image(scene.image_path).convert("RGB") |
|
image = refiner( |
|
prompt=prompt, |
|
image=init_image, |
|
strength = 1.00 - scene.image_power, |
|
negative_prompt=negative_prompt, |
|
num_inference_steps=image_num_inference_steps, |
|
guidance_scale=image_num_guidance, |
|
generator=generator, |
|
).images[0] |
|
|
|
# Generate |
|
else: |
|
print("Generate: Image ") |
|
image = pipe( |
|
prompt, |
|
negative_prompt=negative_prompt, |
|
num_inference_steps=image_num_inference_steps, |
|
guidance_scale=image_num_guidance, |
|
height=y, |
|
width=x, |
|
generator=generator, |
|
).images[0] |
|
|
|
# Add refiner |
|
if do_refine: |
|
print("Refine: Image") |
|
image = refiner( |
|
prompt, |
|
negative_prompt=negative_prompt, |
|
num_inference_steps=image_num_inference_steps, |
|
denoising_start=0.8, |
|
guidance_scale=image_num_guidance, |
|
image=image, |
|
#image=image[None, :], |
|
).images[0] |
|
|
|
# Move to folder |
|
filename = clean_filename( |
|
str(seed) + "_" + context.scene.generate_movie_prompt |
|
) |
|
out_path = solve_path(filename+".png") |
|
|
|
image.save(out_path) |
|
|
|
# Add strip |
|
if os.path.isfile(out_path): |
|
strip = scene.sequence_editor.sequences.new_image( |
|
name=str(seed) + "_" + context.scene.generate_movie_prompt, |
|
frame_start=start_frame, |
|
filepath=out_path, |
|
channel=empty_channel, |
|
fit_method="FIT", |
|
) |
|
strip.frame_final_duration = scene.generate_movie_frames |
|
strip.transform.filter = "SUBSAMPLING_3x3" |
|
|
|
scene.sequence_editor.active_strip = strip |
|
if i > 0: |
|
scene.frame_current = ( |
|
scene.sequence_editor.active_strip.frame_final_start |
|
) |
|
strip.use_proxy = True |
|
bpy.ops.sequencer.rebuild_proxy() |
|
|
|
# Redraw UI to display the new strip. Remove this if Blender crashes: |
|
# https://docs.blender.org/api/current/info_gotcha.html#can-i-redraw-during-script-execution |
|
bpy.ops.wm.redraw_timer(type="DRAW_WIN_SWAP", iterations=1) |
|
else: |
|
print("No resulting file found.") |
|
|
|
# clear the VRAM |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
bpy.ops.renderreminder.play_notification() |
|
scene.frame_current = current_frame |
|
|
|
# clear the VRAM |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
return {"FINISHED"} |
|
|
|
|
|
class SEQUENCER_OT_strip_to_generatorAI(Operator): |
|
"""Convert selected text strips to Generative AI""" |
|
|
|
bl_idname = "sequencer.text_to_generator" |
|
bl_label = "Generative AI" |
|
bl_options = {"INTERNAL"} |
|
bl_description = "Adds selected strips as inputs to the Generative AI process" |
|
|
|
@classmethod |
|
def poll(cls, context): |
|
return context.scene and context.scene.sequence_editor |
|
|
|
def execute(self, context): |
|
preferences = context.preferences |
|
addon_prefs = preferences.addons[__name__].preferences |
|
play_sound = addon_prefs.playsound |
|
addon_prefs.playsound = False |
|
scene = context.scene |
|
sequencer = bpy.ops.sequencer |
|
sequences = bpy.context.sequences |
|
strips = context.selected_sequences |
|
prompt = scene.generate_movie_prompt |
|
negative_prompt = scene.generate_movie_negative_prompt |
|
current_frame = scene.frame_current |
|
type = scene.generatorai_typeselect |
|
seed = scene.movie_num_seed |
|
use_random = scene.movie_use_random |
|
use_strip_data = addon_prefs.use_strip_data |
|
|
|
if not strips: |
|
self.report({"INFO"}, "Select strip(s) for processing.") |
|
return {"CANCELLED"} |
|
else: |
|
print("\nStrip input processing started (ctrl+c to cancel).") |
|
|
|
for strip in strips: |
|
if strip.type in {'MOVIE', 'IMAGE', 'TEXT'}: |
|
break |
|
else: |
|
self.report({"INFO"}, "None of the selected strips are movie, image, or text types.") |
|
return {"CANCELLED"} |
|
|
|
for count, strip in enumerate(strips): |
|
if strip.type == "TEXT": |
|
if strip.text: |
|
print("\n" + str(count+1) + "/"+ str(len(strips))) |
|
print("Prompt: " + strip.text + ", " + prompt) |
|
print("Negative Prompt: " + negative_prompt) |
|
scene.generate_movie_prompt = strip.text + ", " + prompt |
|
scene.frame_current = strip.frame_final_start |
|
|
|
if type == "movie": |
|
sequencer.generate_movie() |
|
if type == "audio": |
|
sequencer.generate_audio() |
|
if type == "image": |
|
sequencer.generate_image() |
|
|
|
context.scene.generate_movie_prompt = prompt |
|
scene.generate_movie_negative_prompt = negative_prompt |
|
context.scene.movie_use_random = use_random |
|
context.scene.movie_num_seed = seed |
|
|
|
if strip.type == "IMAGE": |
|
strip_dirname = os.path.dirname(strip.directory) |
|
image_path = bpy.path.abspath( |
|
os.path.join(strip_dirname, strip.elements[0].filename) |
|
) |
|
bpy.types.Scene.image_path = image_path |
|
if strip.name: |
|
strip_prompt = os.path.splitext(strip.name)[0] |
|
seed_nr = extract_numbers(str(strip_prompt)) |
|
if seed_nr: |
|
file_seed = int(seed_nr) |
|
if file_seed and use_strip_data: |
|
strip_prompt = (strip_prompt.replace(str(file_seed)+"_", "")) |
|
context.scene.movie_use_random = False |
|
context.scene.movie_num_seed = file_seed |
|
|
|
if use_strip_data: |
|
styled_prompt = style_prompt(strip_prompt + ", " + prompt)[0] |
|
styled_negative_prompt = style_prompt(strip_prompt + ", " + prompt)[1] |
|
else: |
|
styled_prompt = style_prompt(prompt)[0] |
|
styled_negative_prompt = style_prompt(prompt)[1] |
|
|
|
print("\n" + str(count+1) + "/"+ str(len(strips))) |
|
print("Prompt: " + styled_prompt) |
|
print("Negative Prompt: " + styled_negative_prompt) |
|
|
|
scene.generate_movie_prompt = styled_prompt |
|
scene.generate_movie_negative_prompt = styled_negative_prompt |
|
scene.frame_current = strip.frame_final_start |
|
|
|
if type == "movie": |
|
sequencer.generate_movie() |
|
if type == "audio": |
|
sequencer.generate_audio() |
|
if type == "image": |
|
sequencer.generate_image() |
|
|
|
scene.generate_movie_prompt = prompt |
|
scene.generate_movie_negative_prompt = negative_prompt |
|
if use_strip_data: |
|
scene.movie_use_random = use_random |
|
scene.movie_num_seed = seed |
|
|
|
bpy.types.Scene.image_path = "" |
|
|
|
if strip.type == "MOVIE": |
|
movie_path = bpy.path.abspath( |
|
strip.filepath |
|
) |
|
bpy.types.Scene.movie_path = movie_path |
|
if strip.name: |
|
strip_prompt = os.path.splitext(strip.name)[0] |
|
|
|
seed_nr = extract_numbers(str(strip_prompt)) |
|
if seed_nr: |
|
file_seed = int(seed_nr) |
|
if file_seed and use_strip_data: |
|
strip_prompt = (strip_prompt.replace(str(file_seed)+"_", "")) |
|
context.scene.movie_use_random = False |
|
context.scene.movie_num_seed = file_seed |
|
|
|
if use_strip_data: |
|
styled_prompt = style_prompt(strip_prompt + ", " + prompt)[0] |
|
styled_negative_prompt = style_prompt(strip_prompt + ", " + prompt)[1] |
|
else: |
|
styled_prompt = style_prompt(prompt)[0] |
|
styled_negative_prompt = style_prompt(prompt)[1] |
|
|
|
print("\n" + str(count+1) + "/"+ str(len(strips))) |
|
print("Prompt: " + styled_prompt) |
|
print("Negative Prompt: " + styled_negative_prompt) |
|
|
|
scene.generate_movie_prompt = styled_prompt |
|
scene.generate_movie_negative_prompt = styled_negative_prompt |
|
scene.frame_current = strip.frame_final_start |
|
|
|
if type == "movie": |
|
sequencer.generate_movie() |
|
if type == "audio": |
|
sequencer.generate_audio() |
|
if type == "image": |
|
sequencer.generate_image() |
|
|
|
scene.generate_movie_prompt = prompt |
|
scene.generate_movie_negative_prompt = negative_prompt |
|
if use_strip_data: |
|
scene.movie_use_random = use_random |
|
scene.movie_num_seed = seed |
|
|
|
bpy.types.Scene.movie_path = "" |
|
|
|
scene.frame_current = current_frame |
|
|
|
scene.generate_movie_prompt = prompt |
|
scene.generate_movie_negative_prompt = negative_prompt |
|
context.scene.movie_use_random = use_random |
|
context.scene.movie_num_seed = seed |
|
|
|
addon_prefs.playsound = play_sound |
|
bpy.ops.renderreminder.play_notification() |
|
|
|
print("Processing finished.") |
|
|
|
return {"FINISHED"} |
|
|
|
|
|
classes = ( |
|
GeneratorAddonPreferences, |
|
SEQUENCER_OT_generate_movie, |
|
SEQUENCER_OT_generate_audio, |
|
SEQUENCER_OT_generate_image, |
|
SEQEUNCER_PT_generate_ai, |
|
GENERATOR_OT_sound_notification, |
|
SEQUENCER_OT_strip_to_generatorAI, |
|
GENERATOR_OT_install, |
|
GENERATOR_OT_uninstall, |
|
) |
|
|
|
|
|
def register(): |
|
bpy.types.Scene.generate_movie_prompt = bpy.props.StringProperty( |
|
name="generate_movie_prompt", |
|
default="", |
|
) |
|
bpy.types.Scene.generate_movie_negative_prompt = bpy.props.StringProperty( |
|
name="generate_movie_negative_prompt", |
|
default="", |
|
) |
|
bpy.types.Scene.generate_audio_prompt = bpy.props.StringProperty( |
|
name="generate_audio_prompt", default="" |
|
) |
|
bpy.types.Scene.generate_movie_x = bpy.props.IntProperty( |
|
name="generate_movie_x", |
|
default=1024, |
|
step=64, |
|
min=192, |
|
max=1536, |
|
) |
|
bpy.types.Scene.generate_movie_y = bpy.props.IntProperty( |
|
name="generate_movie_y", |
|
default=512, |
|
step=64, |
|
min=192, |
|
max=1536, |
|
) |
|
# The number of frames to be generated. |
|
bpy.types.Scene.generate_movie_frames = bpy.props.IntProperty( |
|
name="generate_movie_frames", |
|
default=6, |
|
min=1, |
|
max=125, |
|
) |
|
# The number of denoising steps. More denoising steps usually lead to a higher quality audio at the expense of slower inference. |
|
bpy.types.Scene.movie_num_inference_steps = bpy.props.IntProperty( |
|
name="movie_num_inference_steps", |
|
default=25, |
|
min=1, |
|
max=100, |
|
) |
|
# The number of videos to generate. |
|
bpy.types.Scene.movie_num_batch = bpy.props.IntProperty( |
|
name="movie_num_batch", |
|
default=1, |
|
min=1, |
|
max=100, |
|
) |
|
# The seed number. |
|
bpy.types.Scene.movie_num_seed = bpy.props.IntProperty( |
|
name="movie_num_seed", |
|
default=1, |
|
min=1, |
|
max=2147483647, |
|
) |
|
|
|
# The seed number. |
|
bpy.types.Scene.movie_use_random = bpy.props.BoolProperty( |
|
name="movie_use_random", |
|
default=1, |
|
) |
|
|
|
# The guidance number. |
|
bpy.types.Scene.movie_num_guidance = bpy.props.FloatProperty( |
|
name="movie_num_guidance", |
|
default=9.0, |
|
min=1, |
|
max=100, |
|
) |
|
|
|
# The frame audio duration. |
|
bpy.types.Scene.audio_length_in_f = bpy.props.IntProperty( |
|
name="audio_length_in_f", |
|
default=80, |
|
min=1, |
|
max=10000, |
|
) |
|
|
|
bpy.types.Scene.generatorai_typeselect = bpy.props.EnumProperty( |
|
name="Sound", |
|
items=[ |
|
("movie", "Video", "Generate Video"), |
|
("image", "Image", "Generate Image"), |
|
("audio", "Audio", "Generate Audio"), |
|
], |
|
default="image", |
|
update=output_strips_updated, |
|
) |
|
|
|
bpy.types.Scene.speakers = bpy.props.EnumProperty( |
|
name="Speakers", |
|
items=[ |
|
("speaker_0", "Speaker 0", ""), |
|
("speaker_1", "Speaker 1", ""), |
|
("speaker_2", "Speaker 2", ""), |
|
("speaker_3", "Speaker 3", ""), |
|
("speaker_4", "Speaker 4", ""), |
|
("speaker_5", "Speaker 5", ""), |
|
("speaker_6", "Speaker 6", ""), |
|
("speaker_7", "Speaker 7", ""), |
|
("speaker_8", "Speaker 8", ""), |
|
("speaker_9", "Speaker 9", ""), |
|
], |
|
default="speaker_3", |
|
) |
|
|
|
bpy.types.Scene.languages = bpy.props.EnumProperty( |
|
name="Languages", |
|
items=[ |
|
("en", "English", ""), |
|
("de", "German", ""), |
|
("es", "Spanish", ""), |
|
("fr", "French", ""), |
|
("hi", "Hindi", ""), |
|
("it", "Italian", ""), |
|
("ja", "Japanese", ""), |
|
("ko", "Korean", ""), |
|
("pl", "Polish", ""), |
|
("pt", "Portuguese", ""), |
|
("ru", "Russian", ""), |
|
("tr", "Turkish", ""), |
|
("zh", "Chinese, simplified", ""), |
|
], |
|
default="en", |
|
) |
|
|
|
# Inpaint |
|
bpy.types.Scene.inpaint_selected_strip = bpy.props.StringProperty(name="inpaint_selected_strip", default="") |
|
|
|
# Upscale |
|
bpy.types.Scene.video_to_video = bpy.props.BoolProperty( |
|
name="video_to_video", |
|
default=0, |
|
) |
|
|
|
# Refine SD |
|
bpy.types.Scene.refine_sd = bpy.props.BoolProperty( |
|
name="refine_sd", |
|
default=1, |
|
) |
|
|
|
# movie path |
|
bpy.types.Scene.movie_path = bpy.props.StringProperty(name="movie_path", default="") |
|
bpy.types.Scene.movie_path = "" |
|
|
|
# image path |
|
bpy.types.Scene.image_path = bpy.props.StringProperty(name="image_path", default="") |
|
bpy.types.Scene.image_path = "" |
|
|
|
bpy.types.Scene.input_strips = bpy.props.EnumProperty( |
|
items=[ |
|
("generate", "No Input", "No Input"), |
|
("input_strips", "Strips", "Selected Strips"), |
|
], |
|
default="generate", |
|
update=input_strips_updated, |
|
) |
|
|
|
bpy.types.Scene.image_power = bpy.props.FloatProperty( |
|
name="image_power", |
|
default=0.50, |
|
min=0.05, |
|
max=0.95, |
|
) |
|
|
|
styles_array = load_styles(os.path.dirname(os.path.abspath(__file__))+"/styles.json") |
|
if styles_array: |
|
bpy.types.Scene.generatorai_styles = bpy.props.EnumProperty( |
|
name="Generator AI Styles", |
|
items=[("no_style", "No Style", "No Style")] + styles_array, |
|
default="no_style", |
|
) |
|
|
|
|
|
for cls in classes: |
|
bpy.utils.register_class(cls) |
|
|
|
|
|
def unregister(): |
|
for cls in classes: |
|
bpy.utils.unregister_class(cls) |
|
del bpy.types.Scene.generate_movie_prompt |
|
del bpy.types.Scene.generate_audio_prompt |
|
del bpy.types.Scene.generate_movie_x |
|
del bpy.types.Scene.generate_movie_y |
|
del bpy.types.Scene.movie_num_inference_steps |
|
del bpy.types.Scene.movie_num_batch |
|
del bpy.types.Scene.movie_num_seed |
|
del bpy.types.Scene.movie_use_random |
|
del bpy.types.Scene.movie_num_guidance |
|
del bpy.types.Scene.generatorai_typeselect |
|
del bpy.types.Scene.movie_path |
|
del bpy.types.Scene.image_path |
|
del bpy.types.Scene.refine_sd |
|
del bpy.types.Scene.generatorai_styles |
|
del bpy.types.Scene.inpaint_selected_strip |
|
|
|
if __name__ == "__main__": |
|
unregister() |
|
register()
|
|
|