# https://modelscope.cn/models/damo/text-to-video-synthesis/summary
bl_info = {
" name " : " Generative AI " ,
" author " : " tintwotin " ,
" version " : ( 1 , 4 ) ,
" blender " : ( 3 , 4 , 0 ) ,
" location " : " Video Sequence Editor > Sidebar > Generative AI " ,
" description " : " Generate media in the VSE " ,
" category " : " Sequencer " ,
}
import bpy , ctypes , random
from bpy . types import Operator , Panel , AddonPreferences
from bpy . props import (
StringProperty ,
BoolProperty ,
EnumProperty ,
IntProperty ,
FloatProperty ,
)
import site , platform , json
import subprocess
import sys , os , aud , re
import string
from os . path import dirname , realpath , isdir , join , basename
import shutil
from datetime import date
os_platform = platform . system ( ) # 'Linux', 'Darwin', 'Java', 'Windows'
def show_system_console ( show ) :
if os_platform == " Windows " :
# https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-showwindow
SW_HIDE = 0
SW_SHOW = 5
ctypes . windll . user32 . ShowWindow (
ctypes . windll . kernel32 . GetConsoleWindow ( ) , SW_SHOW # if show else SW_HIDE
)
def set_system_console_topmost ( top ) :
if os_platform == " Windows " :
# https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-setwindowpos
HWND_NOTOPMOST = - 2
HWND_TOPMOST = - 1
HWND_TOP = 0
SWP_NOMOVE = 0x0002
SWP_NOSIZE = 0x0001
SWP_NOZORDER = 0x0004
ctypes . windll . user32 . SetWindowPos (
ctypes . windll . kernel32 . GetConsoleWindow ( ) ,
HWND_TOP if top else HWND_NOTOPMOST ,
0 ,
0 ,
0 ,
0 ,
SWP_NOMOVE | SWP_NOSIZE | SWP_NOZORDER ,
)
def split_and_recombine_text ( text , desired_length = 200 , max_length = 300 ) :
""" Split text it into chunks of a desired length trying to keep sentences intact. """
# normalize text, remove redundant whitespace and convert non-ascii quotes to ascii
text = re . sub ( r " \ n \ n+ " , " \n " , text )
text = re . sub ( r " \ s+ " , " " , text )
text = re . sub ( r " [“”] " , ' " ' , text )
rv = [ ]
in_quote = False
current = " "
split_pos = [ ]
pos = - 1
end_pos = len ( text ) - 1
def seek ( delta ) :
nonlocal pos , in_quote , current
is_neg = delta < 0
for _ in range ( abs ( delta ) ) :
if is_neg :
pos - = 1
current = current [ : - 1 ]
else :
pos + = 1
current + = text [ pos ]
if text [ pos ] == ' " ' :
in_quote = not in_quote
return text [ pos ]
def peek ( delta ) :
p = pos + delta
return text [ p ] if p < end_pos and p > = 0 else " "
def commit ( ) :
nonlocal rv , current , split_pos
rv . append ( current )
current = " "
split_pos = [ ]
while pos < end_pos :
c = seek ( 1 )
# do we need to force a split?
if len ( current ) > = max_length :
if len ( split_pos ) > 0 and len ( current ) > ( desired_length / 2 ) :
# we have at least one sentence and we are over half the desired length, seek back to the last split
d = pos - split_pos [ - 1 ]
seek ( - d )
else :
# no full sentences, seek back until we are not in the middle of a word and split there
while c not in " !?., \n " and pos > 0 and len ( current ) > desired_length :
c = seek ( - 1 )
commit ( )
# check for sentence boundaries
elif not in_quote and ( c in " !? \n " or ( c == " . " and peek ( 1 ) in " \n " ) ) :
# seek forward if we have consecutive boundary markers but still within the max length
while (
pos < len ( text ) - 1 and len ( current ) < max_length and peek ( 1 ) in " !?., "
) :
c = seek ( 1 )
split_pos . append ( pos )
if len ( current ) > = desired_length :
commit ( )
# treat end of quote as a boundary if its followed by a space or newline
elif in_quote and peek ( 1 ) == ' " ' and peek ( 2 ) in " \n " :
seek ( 2 )
split_pos . append ( pos )
rv . append ( current )
# clean up, remove lines with only whitespace or punctuation
rv = [ s . strip ( ) for s in rv ]
rv = [ s for s in rv if len ( s ) > 0 and not re . match ( r " ^[ \ s \ .,;:!?]*$ " , s ) ]
return rv
def extract_numbers ( input_string ) :
numbers = re . findall ( r ' \ d+ ' , input_string )
if numbers :
return int ( numbers [ 0 ] )
else :
return None
def load_styles ( json_filename ) :
styles_array = [ ]
try :
with open ( json_filename , " r " ) as json_file :
data = json . load ( json_file )
except FileNotFoundError :
print ( f " JSON file ' { json_filename } ' not found. " )
data = [ ]
for item in data :
name = item [ " name " ]
prompt = item [ " prompt " ]
negative_prompt = item [ " negative_prompt " ]
styles_array . append ( ( negative_prompt . lower ( ) . replace ( " " , " _ " ) , name . title ( ) , prompt ) )
return styles_array
def style_prompt ( prompt ) :
selected_entry_key = bpy . context . scene . generatorai_styles
return_array = [ ]
if selected_entry_key :
styles_array = load_styles ( os . path . dirname ( os . path . abspath ( __file__ ) ) + " /styles.json " )
if selected_entry_key :
selected_entry = next ( ( item for item in styles_array if item [ 0 ] == selected_entry_key ) , None )
if selected_entry :
selected_entry_list = list ( selected_entry )
return_array . append ( selected_entry_list [ 2 ] . replace ( " {prompt} " , prompt ) )
return_array . append ( selected_entry_list [ 0 ] . replace ( " _ " , " " ) )
return return_array
return_array . append ( bpy . context . scene . generate_movie_prompt )
return_array . append ( bpy . context . scene . generate_movie_negative_prompt )
return return_array
def closest_divisible_64 ( num ) :
# Determine the remainder when num is divided by 64
remainder = num % 64
# If the remainder is less than or equal to 32, return num - remainder,
# but ensure the result is not less than 64
if remainder < = 32 :
result = num - remainder
return max ( result , 192 )
# Otherwise, return num + (64 - remainder)
else :
return num + ( 64 - remainder )
#def ensure_divisible_by_64(value):
# remainder = value % 64
# if remainder != 0:
# value += 64 - remainder
# return value
def find_first_empty_channel ( start_frame , end_frame ) :
for ch in range ( 1 , len ( bpy . context . scene . sequence_editor . sequences_all ) + 1 ) :
for seq in bpy . context . scene . sequence_editor . sequences_all :
if (
seq . channel == ch
and seq . frame_final_start < end_frame
and ( seq . frame_final_start + seq . frame_final_duration ) > start_frame
) :
break
else :
return ch
return 1
def clean_filename ( filename ) :
filename = filename [ : 50 ]
valid_chars = " -_,.() %s %s " % ( string . ascii_letters , string . digits )
clean_filename = " " . join ( c if c in valid_chars else " _ " for c in filename )
clean_filename = clean_filename . replace ( " \n " , " " )
clean_filename = clean_filename . replace ( " \r " , " " )
clean_filename = clean_filename . replace ( " " , " _ " )
return clean_filename . strip ( )
def create_folder ( folderpath ) :
try :
os . makedirs ( folderpath )
return True
except FileExistsError :
# directory already exists
pass
return False
def solve_path ( full_path ) :
preferences = bpy . context . preferences
addon_prefs = preferences . addons [ __name__ ] . preferences
name , ext = os . path . splitext ( full_path )
dir_path , filename = os . path . split ( name )
dir_path = addon_prefs . generator_ai + " \\ " + str ( date . today ( ) )
create_folder ( dir_path )
cleaned_filename = clean_filename ( filename )
new_filename = cleaned_filename + ext
i = 1
while os . path . exists ( os . path . join ( dir_path , new_filename ) ) :
name , ext = os . path . splitext ( new_filename )
new_filename = f " { name . rsplit ( ' ( ' , 1 ) [ 0 ] } ( { i } ) { ext } "
i + = 1
return os . path . join ( dir_path , new_filename )
def limit_string ( my_string ) :
if len ( my_string ) > 77 :
print (
" Warning: String is longer than 77 characters. Excessive string: " ,
my_string [ 77 : ] ,
)
return my_string [ : 77 ]
else :
return my_string
# Function to load a video as a NumPy array
def load_video_as_np_array ( video_path ) :
import cv2
import numpy as np
cap = cv2 . VideoCapture ( video_path )
if not cap . isOpened ( ) :
raise IOError ( " Error opening video file " )
frames = [ ]
while True :
ret , frame = cap . read ( )
if not ret :
break
frame = cv2 . cvtColor ( frame , cv2 . COLOR_BGR2RGB )
frames . append ( frame )
cap . release ( )
return np . array ( frames )
def process_frames ( frame_folder_path , target_width ) :
from PIL import Image
import cv2
processed_frames = [ ]
# List all image files in the folder
image_files = sorted (
[ f for f in os . listdir ( frame_folder_path ) if f . endswith ( " .png " ) ]
)
for image_file in image_files :
image_path = os . path . join ( frame_folder_path , image_file )
img = Image . open ( image_path )
# Process the image (resize and convert to RGB)
frame_width , frame_height = img . size
#target_width = 512
target_height = int ( ( target_width / frame_width ) * frame_height )
# Ensure width and height are divisible by 64
target_width = closest_divisible_64 ( target_width )
target_height = closest_divisible_64 ( target_height )
img = img . resize ( ( target_width , target_height ) , Image . ANTIALIAS )
img = img . convert ( " RGB " )
processed_frames . append ( img )
return processed_frames
def process_video ( input_video_path , output_video_path ) :
from PIL import Image
import cv2
import shutil
# Create a temporary folder for storing frames
temp_image_folder = solve_path ( " temp_images " )
if not os . path . exists ( temp_image_folder ) :
os . makedirs ( temp_image_folder )
# Open the video file using OpenCV
cap = cv2 . VideoCapture ( input_video_path )
frame_count = int ( cap . get ( cv2 . CAP_PROP_FRAME_COUNT ) )
fps = int ( cap . get ( cv2 . CAP_PROP_FPS ) )
# Save each loaded frame as an image in the temp folder
for i in range ( frame_count ) :
ret , frame = cap . read ( )
if not ret :
break
# Save the frame as an image in the temp folder
temp_image_path = os . path . join ( temp_image_folder , f " frame_ { i : 04d } .png " )
cv2 . imwrite ( temp_image_path , frame )
cap . release ( )
# Process frames using the separate function
processed_frames = process_frames ( temp_image_folder , 1024 )
# print("Temp folder: "+temp_image_folder)
# Clean up: Delete the temporary image folder
shutil . rmtree ( temp_image_folder )
return processed_frames
def process_image ( image_path , frames_nr ) :
from PIL import Image
import cv2 , shutil
img = cv2 . imread ( image_path )
# Create a temporary folder for storing frames
temp_image_folder = solve_path ( " /temp_images " )
if not os . path . exists ( temp_image_folder ) :
os . makedirs ( temp_image_folder )
# Add zoom motion to the image and save frames
zoom_factor = 1.0
for i in range ( frames_nr ) :
zoomed_img = cv2 . resize ( img , None , fx = zoom_factor , fy = zoom_factor )
output_path = os . path . join ( temp_image_folder , f " frame_ { i : 04d } .png " )
cv2 . imwrite ( output_path , zoomed_img )
zoom_factor + = 1.0
# Process frames using the separate function
processed_frames = process_frames ( temp_image_folder , 1024 )
# Clean up: Delete the temporary image folder
shutil . rmtree ( temp_image_folder )
return processed_frames
def low_vram ( ) :
import torch
total_vram = 0
for i in range ( torch . cuda . device_count ( ) ) :
properties = torch . cuda . get_device_properties ( i )
total_vram + = properties . total_memory
return ( total_vram / ( 1024 * * 3 ) ) < 8.1 # Y/N under 6.1 GB?
def import_module ( self , module , install_module ) :
show_system_console ( True )
set_system_console_topmost ( True )
module = str ( module )
try :
exec ( " import " + module )
except ModuleNotFoundError :
app_path = site . USER_SITE
if app_path not in sys . path :
sys . path . append ( app_path )
pybin = sys . executable
self . report ( { " INFO " } , " Installing: " + module + " module. " )
print ( " Installing: " + module + " module " )
subprocess . check_call (
[
pybin ,
" -m " ,
" pip " ,
" install " ,
install_module ,
" --no-warn-script-location " ,
" --user " ,
]
)
try :
exec ( " import " + module )
except ModuleNotFoundError :
return False
return True
def install_modules ( self ) :
app_path = site . USER_SITE
if app_path not in sys . path :
sys . path . append ( app_path )
pybin = sys . executable
print ( " Ensuring: pip " )
try :
subprocess . call ( [ pybin , " -m " , " ensurepip " ] )
subprocess . call ( [ pybin , " -m " , " pip " , " install " , " --upgrade " , " pip " ] )
except ImportError :
pass
try :
exec ( " import torch " )
except ModuleNotFoundError :
app_path = site . USER_SITE
if app_path not in sys . path :
sys . path . append ( app_path )
pybin = sys . executable
self . report ( { " INFO " } , " Installing: torch module. " )
print ( " Installing: torch module " )
if os_platform == " Windows " :
subprocess . check_call (
[
pybin ,
" -m " ,
" pip " ,
" install " ,
" torch " ,
" --index-url " ,
" https://download.pytorch.org/whl/cu118 " ,
" --no-warn-script-location " ,
" --user " ,
]
)
subprocess . check_call (
[
pybin ,
" -m " ,
" pip " ,
" install " ,
" torchvision " ,
" --index-url " ,
" https://download.pytorch.org/whl/cu118 " ,
" --no-warn-script-location " ,
" --user " ,
]
)
subprocess . check_call (
[
pybin ,
" -m " ,
" pip " ,
" install " ,
" torchaudio " ,
" --index-url " ,
" https://download.pytorch.org/whl/cu118 " ,
" --no-warn-script-location " ,
" --user " ,
]
)
else :
import_module ( self , " torch " , " torch " )
import_module ( self , " torchvision " , " torchvision " )
import_module ( self , " torchaudio " , " torchaudio " )
if os_platform == " Darwin " or os_platform == " Linux " :
import_module ( self , " sox " , " sox " )
else :
import_module ( self , " soundfile " , " PySoundFile " )
#import_module(self, "diffusers", "diffusers")
import_module ( self , " diffusers " , " git+https://github.com/huggingface/diffusers.git@v0.19.3 " )
# import_module(self, "diffusers", "git+https://github.com/huggingface/diffusers.git")
import_module ( self , " accelerate " , " accelerate " )
import_module ( self , " transformers " , " transformers " )
# import_module(self, "optimum", "optimum")
import_module ( self , " sentencepiece " , " sentencepiece " )
import_module ( self , " safetensors " , " safetensors " )
import_module ( self , " cv2 " , " opencv_python " )
import_module ( self , " PIL " , " pillow " )
import_module ( self , " scipy " , " scipy " )
import_module ( self , " IPython " , " IPython " )
import_module ( self , " bark " , " git+https://github.com/suno-ai/bark.git " )
import_module ( self , " xformers " , " xformers " )
import_module ( self , " imageio " , " imageio " )
import_module ( self , " imwatermark " , " invisible-watermark>=0.2.0 " )
# import_module(self, "triton", "C://Users//45239//Downloads//triton-2.0.0-cp310-cp310-win_amd64.whl")
# import_module(self, "audiocraft", "git+https://github.com/facebookresearch/audiocraft.git")
# subprocess.check_call([pybin,"-m","pip","install","force-reinstall","no-deps","pre xformers"])
subprocess . check_call ( [ pybin , " -m " , " pip " , " install " , " numpy " , " --upgrade " ] )
if os_platform == " Windows " :
subprocess . check_call (
[
pybin ,
" -m " ,
" pip " ,
" install " ,
" torch " ,
" --index-url " ,
" https://download.pytorch.org/whl/cu118 " ,
" --no-warn-script-location " ,
" --user " ,
]
)
def get_module_dependencies ( module_name ) :
"""
Get the list of dependencies for a given module .
"""
app_path = site . USER_SITE
if app_path not in sys . path :
sys . path . append ( app_path )
pybin = sys . executable
result = subprocess . run (
[ pybin , " -m " , " pip " , " show " , module_name ] , capture_output = True , text = True
)
output = result . stdout . strip ( )
dependencies = [ ]
for line in output . split ( " \n " ) :
if line . startswith ( " Requires: " ) :
dependencies = line . split ( " : " ) [ 1 ] . strip ( ) . split ( " , " )
break
return dependencies
def uninstall_module_with_dependencies ( module_name ) :
"""
Uninstall a module and its dependencies .
"""
show_system_console ( True )
set_system_console_topmost ( True )
app_path = site . USER_SITE
if app_path not in sys . path :
sys . path . append ( app_path )
pybin = sys . executable
dependencies = get_module_dependencies ( module_name )
# Uninstall the module
subprocess . run ( [ pybin , " -m " , " pip " , " uninstall " , " -y " , module_name ] )
# Uninstall the dependencies
for dependency in dependencies :
subprocess . run ( [ pybin , " -m " , " pip " , " uninstall " , " -y " , dependency ] )
subprocess . check_call ( [ pybin , " -m " , " pip " , " install " , " numpy " ] )
def input_strips_updated ( self , context ) :
preferences = context . preferences
addon_prefs = preferences . addons [ __name__ ] . preferences
movie_model_card = addon_prefs . movie_model_card
scene = context . scene
input = scene . input_strips
if movie_model_card == " stabilityai/stable-diffusion-xl-base-1.0 " :
scene . input_strips = " input_strips "
class GeneratorAddonPreferences ( AddonPreferences ) :
bl_idname = __name__
soundselect : EnumProperty (
name = " Sound " ,
items = {
( " ding " , " Ding " , " A simple bell sound " ) ,
( " coin " , " Coin " , " A Mario-like coin sound " ) ,
( " user " , " User " , " Load a custom sound file " ) ,
} ,
default = " ding " ,
)
default_folder = os . path . join (
os . path . dirname ( os . path . abspath ( __file__ ) ) , " sounds " , " *.wav "
)
if default_folder not in sys . path :
sys . path . append ( default_folder )
usersound : StringProperty (
name = " User " ,
description = " Load a custom sound from your computer " ,
subtype = " FILE_PATH " ,
default = default_folder ,
maxlen = 1024 ,
)
playsound : BoolProperty (
name = " Audio Notification " ,
default = True ,
)
movie_model_card : bpy . props . EnumProperty (
name = " Video Model " ,
items = [
( " strangeman3107/animov-0.1.1 " , " Animov (448x384) " , " Animov (448x384) " ) ,
( " strangeman3107/animov-512x " , " Animov (512x512) " , " Animov (512x512) " ) ,
( " camenduru/potat1 " , " Potat v1 (1024x576) " , " Potat (1024x576) " ) ,
(
" cerspense/zeroscope_v2_dark_30x448x256 " ,
" Zeroscope (448x256x30) " ,
" Zeroscope (448x256x30) " ,
) ,
(
" cerspense/zeroscope_v2_576w " ,
" Zeroscope (576x320x24) " ,
" Zeroscope (576x320x24) " ,
) ,
(
" cerspense/zeroscope_v2_XL " ,
" Zeroscope XL (1024x576x24) " ,
" Zeroscope XL (1024x576x24) " ,
) ,
(
" stabilityai/stable-diffusion-xl-base-1.0 " ,
" Img2img SD XL 1.0 Refine (1024x1024) " ,
" Stable Diffusion XL 1.0 " ,
) ,
# (
# "576-b2g8f5x4-36-18000/18000",
# "576-b2g8f5x4-36-18000 (576x320)",
# "576-b2g8f5x4-36-18000",
# ),
# ("camenduru/AnimateDiff/", "AnimateDiff", "AnimateDiff"),
# ("polyware-ai/longscope", "Longscope (384x216x94)", "Longscope ( 384x216x94)"),
# ("vdo/potat1-lotr-25000/", "LOTR (1024x576x24)", "LOTR (1024x576x24)"),
# ("damo-vilab/text-to-video-ms-1.7b", "Modelscope (256x256)", "Modelscope (256x256)"),
# ("polyware-ai/text-to-video-ms-stable-v1", "Polyware 1.7b (384x384)", "Polyware 1.7b (384x384)"),
# ("vdo/potat1-50000", "Potat v1 50000 (1024x576)", "Potat (1024x576)"),
# ("cerspense/zeroscope_v1-1_320s", "Zeroscope v1.1 (320x320)", "Zeroscope (320x320)"),
] ,
default = " cerspense/zeroscope_v2_XL " ,
update = input_strips_updated ,
)
image_model_card : bpy . props . EnumProperty (
name = " Image Model " ,
items = [
(
" runwayml/stable-diffusion-v1-5 " ,
" Stable Diffusion 1.5 (512x512) " ,
" Stable Diffusion 1.5 " ,
) ,
(
" stabilityai/stable-diffusion-2 " ,
" Stable Diffusion 2 (768x768) " ,
" Stable Diffusion 2 " ,
) ,
(
" stabilityai/stable-diffusion-xl-base-1.0 " ,
" Stable Diffusion XL 1.0 (1024x1024) " ,
" Stable Diffusion XL 1.0 " ,
) ,
# (
# "segmind/tiny-sd",
# "Stable Diffusion Tiny (512x512)",
# "Stable Diffusion Tiny",
# ),
# (
# "nota-ai/bk-sdm-small-2m",
# "BK SDM Small (512×512)",
# "BK SDM Small (512×512)",
# ),
( " DeepFloyd/IF-I-M-v1.0 " , " DeepFloyd/IF-I-M-v1.0 " , " DeepFloyd " ) ,
# ("stabilityai/stable-diffusion-xl-base-0.9", "Stable Diffusion XL Base 0.9", "Stable Diffusion XL Base 0.9"),
# ("kandinsky-community/kandinsky-2-1", "Kandinsky 2.1 (768x768)", "Kandinsky 2.1 (768x768)"),
] ,
default = " stabilityai/stable-diffusion-xl-base-1.0 " ,
)
audio_model_card : bpy . props . EnumProperty (
name = " Audio Model " ,
items = [
(
" cvssp/audioldm-s-full-v2 " ,
" AudioLDM S Full v2 " ,
" AudioLDM Small Full v2 " ,
) ,
( " bark " , " Bark " , " Bark " ) ,
# ("facebook/audiogen-medium", "AudioGen", "AudioGen"), #I do not have enough VRAM to test if this is working...
# ("cvssp/audioldm", "AudioLDM", "AudioLDM"),
] ,
default = " bark " ,
)
hugginface_token : bpy . props . StringProperty (
name = " Hugginface Token " ,
default = " hugginface_token " ,
subtype = " PASSWORD " ,
)
generator_ai : StringProperty (
name = " Filepath " ,
description = " Path to the folder where the generated files are stored " ,
subtype = " DIR_PATH " ,
default = join ( bpy . utils . user_resource ( " DATAFILES " ) , " Generator AI " ) ,
)
def draw ( self , context ) :
layout = self . layout
box = layout . box ( )
row = box . row ( )
row . operator ( " sequencer.install_generator " )
row . operator ( " sequencer.uninstall_generator " )
box . prop ( self , " movie_model_card " )
box . prop ( self , " image_model_card " )
if self . image_model_card == " DeepFloyd/IF-I-M-v1.0 " :
row = box . row ( align = True )
row . prop ( self , " hugginface_token " )
row . operator (
" wm.url_open " , text = " " , icon = " URL "
) . url = " https://huggingface.co/settings/tokens "
box . prop ( self , " audio_model_card " )
box . prop ( self , " generator_ai " )
row = box . row ( align = True )
row . label ( text = " Notification: " )
row . prop ( self , " playsound " , text = " " )
sub_row = row . row ( )
sub_row . prop ( self , " soundselect " , text = " " )
if self . soundselect == " user " :
sub_row . prop ( self , " usersound " , text = " " )
sub_row . operator ( " renderreminder.play_notification " , text = " " , icon = " PLAY " )
sub_row . active = self . playsound
class GENERATOR_OT_install ( Operator ) :
""" Install all dependencies """
bl_idname = " sequencer.install_generator "
bl_label = " Install Dependencies "
bl_options = { " REGISTER " , " UNDO " }
def execute ( self , context ) :
preferences = context . preferences
addon_prefs = preferences . addons [ __name__ ] . preferences
install_modules ( self )
self . report (
{ " INFO " } ,
" Installation of dependencies is finished. " ,
)
return { " FINISHED " }
class GENERATOR_OT_uninstall ( Operator ) :
""" Uninstall all dependencies """
bl_idname = " sequencer.uninstall_generator "
bl_label = " Uninstall Dependencies "
bl_options = { " REGISTER " , " UNDO " }
def execute ( self , context ) :
preferences = context . preferences
addon_prefs = preferences . addons [ __name__ ] . preferences
uninstall_module_with_dependencies ( " torch " )
uninstall_module_with_dependencies ( " torchvision " )
uninstall_module_with_dependencies ( " torchaudio " )
if os_platform == " Darwin " or os_platform == " Linux " :
uninstall_module_with_dependencies ( " sox " )
else :
uninstall_module_with_dependencies ( " PySoundFile " )
uninstall_module_with_dependencies ( " diffusers " )
uninstall_module_with_dependencies ( " accelerate " )
uninstall_module_with_dependencies ( " transformers " )
uninstall_module_with_dependencies ( " sentencepiece " )
uninstall_module_with_dependencies ( " safetensors " )
uninstall_module_with_dependencies ( " opencv_python " )
uninstall_module_with_dependencies ( " scipy " )
uninstall_module_with_dependencies ( " IPython " )
uninstall_module_with_dependencies ( " bark " )
uninstall_module_with_dependencies ( " xformers " )
uninstall_module_with_dependencies ( " imageio " )
uninstall_module_with_dependencies ( " invisible-watermark " )
uninstall_module_with_dependencies ( " pillow " )
self . report (
{ " INFO " } ,
" \n Remove AI Models manually: \n Linux and macOS: ~/.cache/huggingface/transformers \n Windows: %u serprofile % .cache \\ huggingface \\ transformers " ,
)
return { " FINISHED " }
class GENERATOR_OT_sound_notification ( Operator ) :
""" Test your notification settings """
bl_idname = " renderreminder.play_notification "
bl_label = " Test Notification "
bl_options = { " REGISTER " , " UNDO " }
def execute ( self , context ) :
preferences = context . preferences
addon_prefs = preferences . addons [ __name__ ] . preferences
if addon_prefs . playsound :
device = aud . Device ( )
def coinSound ( ) :
sound = aud . Sound ( " " )
handle = device . play (
sound . triangle ( 1000 )
. highpass ( 20 )
. lowpass ( 2000 )
. ADSR ( 0 , 0.5 , 1 , 0 )
. fadeout ( 0.1 , 0.1 )
. limit ( 0 , 1 )
)
handle = device . play (
sound . triangle ( 1500 )
. highpass ( 20 )
. lowpass ( 2000 )
. ADSR ( 0 , 0.5 , 1 , 0 )
. fadeout ( 0.2 , 0.2 )
. delay ( 0.1 )
. limit ( 0 , 1 )
)
def ding ( ) :
sound = aud . Sound ( " " )
handle = device . play (
sound . triangle ( 3000 )
. highpass ( 20 )
. lowpass ( 1000 )
. ADSR ( 0 , 0.5 , 1 , 0 )
. fadeout ( 0 , 1 )
. limit ( 0 , 1 )
)
if addon_prefs . soundselect == " ding " :
ding ( )
if addon_prefs . soundselect == " coin " :
coinSound ( )
if addon_prefs . soundselect == " user " :
file = str ( addon_prefs . usersound )
if os . path . isfile ( file ) :
sound = aud . Sound ( file )
handle = device . play ( sound )
return { " FINISHED " }
class SEQEUNCER_PT_generate_ai ( Panel ) : # UI
""" Generate Media using AI """
bl_idname = " SEQUENCER_PT_sequencer_generate_movie_panel "
bl_label = " Generative AI "
bl_space_type = " SEQUENCE_EDITOR "
bl_region_type = " UI "
bl_category = " Generative AI "
def draw ( self , context ) :
preferences = context . preferences
addon_prefs = preferences . addons [ __name__ ] . preferences
audio_model_card = addon_prefs . audio_model_card
movie_model_card = addon_prefs . movie_model_card
image_model_card = addon_prefs . image_model_card
scene = context . scene
type = scene . generatorai_typeselect
input = scene . input_strips
layout = self . layout
col = layout . column ( align = True )
col . use_property_split = True
col . use_property_decorate = False
col . scale_y = 1.2
col . prop ( context . scene , " generate_movie_prompt " , text = " " , icon = " ADD " )
if type == " audio " and audio_model_card == " bark " :
pass
else :
col . prop (
context . scene , " generate_movie_negative_prompt " , text = " " , icon = " REMOVE "
)
col . prop ( context . scene , " generatorai_styles " , text = " Style " )
layout = self . layout
layout . use_property_split = True
layout . use_property_decorate = False
if type == " movie " or type == " image " :
col = layout . column ( align = True )
col . prop ( context . scene , " generate_movie_x " , text = " X " )
col . prop ( context . scene , " generate_movie_y " , text = " Y " )
col = layout . column ( align = True )
if type == " movie " or type == " image " :
col . prop ( context . scene , " generate_movie_frames " , text = " Frames " )
if type == " audio " and audio_model_card != " bark " :
col . prop ( context . scene , " audio_length_in_f " , text = " Frames " )
if type == " audio " and audio_model_card == " bark " :
col = layout . column ( align = True )
col . prop ( context . scene , " speakers " , text = " Speaker " )
col . prop ( context . scene , " languages " , text = " Language " )
else :
col . prop ( context . scene , " movie_num_inference_steps " , text = " Quality Steps " )
col . prop ( context . scene , " movie_num_guidance " , text = " Word Power " )
col = layout . column ( )
row = col . row ( align = True )
sub_row = row . row ( align = True )
sub_row . prop ( context . scene , " movie_num_seed " , text = " Seed " )
row . prop ( context . scene , " movie_use_random " , text = " " , icon = " QUESTION " )
sub_row . active = not context . scene . movie_use_random
if type == " movie " and (
movie_model_card == " cerspense/zeroscope_v2_dark_30x448x256 "
or movie_model_card == " cerspense/zeroscope_v2_576w "
or movie_model_card == " cerspense/zeroscope_v2_XL "
) :
col = layout . column ( heading = " Upscale " , align = True )
col . prop ( context . scene , " video_to_video " , text = " 2x " )
if type == " image " and (
image_model_card == " stabilityai/stable-diffusion-xl-base-1.0 "
) :
col = layout . column ( heading = " Refine " , align = True )
col . prop ( context . scene , " refine_sd " , text = " Image " )
sub_col = col . row ( )
sub_col . active = context . scene . refine_sd
col = layout . column ( )
col . prop ( context . scene , " input_strips " , text = " Input " )
if input == " input_strips " :
col . prop ( context . scene , " image_power " , text = " Strip Power " )
col = layout . column ( )
col . prop ( context . scene , " generatorai_typeselect " , text = " Output " )
col . prop ( context . scene , " movie_num_batch " , text = " Batch Count " )
if input == " input_strips " :
row = layout . row ( align = True )
row . scale_y = 1.1
row . operator ( " sequencer.text_to_generator " , text = " Generate from Strips " )
else :
row = layout . row ( align = True )
row . scale_y = 1.1
if type == " movie " :
if movie_model_card == " stabilityai/stable-diffusion-xl-base-1.0 " :
row . operator ( " sequencer.text_to_generator " , text = " Generate from Strips " )
else :
row . operator ( " sequencer.generate_movie " , text = " Generate " )
if type == " image " :
row . operator ( " sequencer.generate_image " , text = " Generate " )
if type == " audio " :
row . operator ( " sequencer.generate_audio " , text = " Generate " )
class SEQUENCER_OT_generate_movie ( Operator ) :
""" Generate Video """
bl_idname = " sequencer.generate_movie "
bl_label = " Prompt "
bl_description = " Convert text to video "
bl_options = { " REGISTER " , " UNDO " }
def execute ( self , context ) :
scene = context . scene
if not scene . generate_movie_prompt :
self . report ( { " INFO " } , " Text prompt in the Generative AI tab is empty! " )
return { " CANCELLED " }
try :
import torch
from diffusers import (
DiffusionPipeline ,
StableDiffusionXLPipeline ,
DPMSolverMultistepScheduler ,
TextToVideoSDPipeline ,
VideoToVideoSDPipeline ,
)
from diffusers . utils import export_to_video
from PIL import Image
import numpy as np
except ModuleNotFoundError :
print ( " In the add-on preferences, install dependencies. " )
self . report (
{ " INFO " } ,
" In the add-on preferences, install dependencies. " ,
)
return { " CANCELLED " }
show_system_console ( True )
set_system_console_topmost ( True )
seq_editor = scene . sequence_editor
if not seq_editor :
scene . sequence_editor_create ( )
# clear the VRAM
if torch . cuda . is_available ( ) :
torch . cuda . empty_cache ( )
current_frame = scene . frame_current
prompt = style_prompt ( scene . generate_movie_prompt ) [ 0 ]
#print("Positive "+prompt)
negative_prompt = scene . generate_movie_negative_prompt + " , " + style_prompt ( scene . generate_movie_prompt ) [ 1 ] + " , nsfw nude nudity "
#print("Negative "+negative_prompt)
movie_x = scene . generate_movie_x
movie_y = scene . generate_movie_y
x = scene . generate_movie_x = closest_divisible_64 ( movie_x )
y = scene . generate_movie_y = closest_divisible_64 ( movie_y )
duration = scene . generate_movie_frames
movie_num_inference_steps = scene . movie_num_inference_steps
movie_num_guidance = scene . movie_num_guidance
input = scene . input_strips
preferences = context . preferences
addon_prefs = preferences . addons [ __name__ ] . preferences
movie_model_card = addon_prefs . movie_model_card
image_model_card = addon_prefs . image_model_card
if torch . cuda . is_available ( ) :
torch . cuda . empty_cache ( )
# LOADING MODULES
# Models for refine imported movie
if ( scene . movie_path or scene . image_path ) and input == " input_strips " :
if movie_model_card == " stabilityai/stable-diffusion-xl-base-1.0 " :
import torch
from diffusers import StableDiffusionXLImg2ImgPipeline
pipe = StableDiffusionXLPipeline . from_pretrained (
" stabilityai/stable-diffusion-xl-base-1.0 " ,
#image_model_card,
torch_dtype = torch . float16 ,
variant = " fp16 " ,
)
pipe . scheduler = DPMSolverMultistepScheduler . from_config (
pipe . scheduler . config
)
if low_vram :
torch . cuda . set_per_process_memory_fraction ( 0.95 )
pipe . enable_model_cpu_offload ( )
# pipe.unet.enable_forward_chunking(chunk_size=1, dim=1)
#pipe.unet.added_cond_kwargs={}
pipe . enable_vae_slicing ( )
#pipe.enable_xformers_memory_efficient_attention()
else :
pipe . to ( " cuda " )
from diffusers import StableDiffusionXLImg2ImgPipeline
refiner = StableDiffusionXLImg2ImgPipeline . from_pretrained (
#"stabilityai/stable-diffusion-xl-base-1.0",
" stabilityai/stable-diffusion-xl-refiner-1.0 " ,
text_encoder_2 = pipe . text_encoder_2 ,
vae = pipe . vae ,
torch_dtype = torch . float16 ,
#use_safetensors=True,
variant = " fp16 " ,
)
if low_vram :
torch . cuda . set_per_process_memory_fraction ( 0.95 )
refiner . enable_model_cpu_offload ( )
# refiner.unet.enable_forward_chunking(chunk_size=1, dim=1)
#refiner.unet.added_cond_kwargs={}
refiner . enable_vae_slicing ( )
#refiner.enable_xformers_memory_efficient_attention()
else :
refiner . to ( " cuda " )
else :
# if movie_model_card == "cerspense/zeroscope_v2_dark_30x448x256" or movie_model_card == "cerspense/zeroscope_v2_576w":
# card = "stabilityai/stable-diffusion-xl-base-1.0"
# else:
# card = movie_model_card
upscale = VideoToVideoSDPipeline . from_pretrained (
# "cerspense/zeroscope_v2_576w",
" cerspense/zeroscope_v2_XL " ,
torch_dtype = torch . float16 ,
#text_encoder=upscale.text_encoder,
#vae=upscale.vae,
#"cerspense/zeroscope_v2_XL", torch_dtype=torch.float16
)
upscale . scheduler = DPMSolverMultistepScheduler . from_config ( upscale . scheduler . config )
if low_vram :
# torch.cuda.set_per_process_memory_fraction(0.95) # 6 GB VRAM
upscale . enable_model_cpu_offload ( )
upscale . unet . enable_forward_chunking ( chunk_size = 1 , dim = 1 )
#upscale.unet.added_cond_kwargs={}
upscale . enable_vae_slicing ( )
#upscale.enable_xformers_memory_efficient_attention()
else :
upscale . to ( " cuda " )
# Models for movie generation
else :
# Options: https://huggingface.co/docs/diffusers/api/pipelines/text_to_video
#pipe = TextToVideoSDPipeline.from_pretrained(
pipe = DiffusionPipeline . from_pretrained (
movie_model_card ,
torch_dtype = torch . float16 ,
# variant="fp16",
)
pipe . scheduler = DPMSolverMultistepScheduler . from_config (
pipe . scheduler . config
)
if low_vram :
pipe . enable_model_cpu_offload ( )
# pipe.unet.enable_forward_chunking(chunk_size=1, dim=1)
#pipe.unet.added_cond_kwargs={}
pipe . enable_vae_slicing ( )
#pipe.enable_xformers_memory_efficient_attention()
else :
pipe . to ( " cuda " )
# Model for upscale generated movie
if scene . video_to_video :
if torch . cuda . is_available ( ) :
torch . cuda . empty_cache ( )
# torch.cuda.set_per_process_memory_fraction(0.85) # 6 GB VRAM
# upscale = VideoToVideoSDPipeline.from_pretrained(
upscale = DiffusionPipeline . from_pretrained (
#"cerspense/zeroscope_v2_576w", torch_dtype=torch.float16
" cerspense/zeroscope_v2_XL " , torch_dtype = torch . float16
)
# upscale = VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16)
upscale . scheduler = DPMSolverMultistepScheduler . from_config (
upscale . scheduler . config
)
if low_vram :
upscale . enable_model_cpu_offload ( )
upscale . unet . enable_forward_chunking ( chunk_size = 1 , dim = 1 )
#upscale.unet.added_cond_kwargs={}
upscale . enable_vae_slicing ( )
#upscale.enable_xformers_memory_efficient_attention()
else :
upscale . to ( " cuda " )
# GENERATING
# Main Loop
for i in range ( scene . movie_num_batch ) :
if torch . cuda . is_available ( ) :
torch . cuda . empty_cache ( )
if i > 0 :
empty_channel = scene . sequence_editor . active_strip . channel
start_frame = (
scene . sequence_editor . active_strip . frame_final_start
+ scene . sequence_editor . active_strip . frame_final_duration
)
scene . frame_current = (
scene . sequence_editor . active_strip . frame_final_start
)
else :
empty_channel = find_first_empty_channel (
scene . frame_current ,
( scene . movie_num_batch * duration ) + scene . frame_current ,
)
start_frame = scene . frame_current
# Get seed
seed = context . scene . movie_num_seed
seed = (
seed
if not context . scene . movie_use_random
else random . randint ( 0 , 999999 )
)
context . scene . movie_num_seed = seed
# Use cuda if possible
if torch . cuda . is_available ( ) :
generator = (
torch . Generator ( " cuda " ) . manual_seed ( seed ) if seed != 0 else None
)
else :
if seed != 0 :
generator = torch . Generator ( )
generator . manual_seed ( seed )
else :
generator = None
# Process batch input
if ( scene . movie_path or scene . image_path ) and input == " input_strips " :
# Path to the video file
video_path = scene . movie_path
# img2img
if movie_model_card == " stabilityai/stable-diffusion-xl-base-1.0 " :
print ( " Frame by frame video with SD XL " )
input_video_path = video_path
output_video_path = solve_path ( " temp_images " )
if scene . movie_path :
frames = process_video ( input_video_path , output_video_path )
elif scene . image_path :
frames = process_image ( scene . image_path , int ( scene . generate_movie_frames ) )
video_frames = [ ]
# Iterate through the frames
for frame_idx , frame in enumerate ( frames ) : # would love to get this flicker free
print ( str ( frame_idx + 1 ) + " / " + str ( len ( frames ) ) )
image = refiner (
prompt ,
negative_prompt = negative_prompt ,
num_inference_steps = movie_num_inference_steps ,
strength = 1.00 - scene . image_power ,
guidance_scale = movie_num_guidance ,
image = frame ,
generator = generator ,
) . images [ 0 ]
video_frames . append ( image )
if torch . cuda . is_available ( ) :
torch . cuda . empty_cache ( )
video_frames = np . array ( video_frames )
# vid2vid / img2vid
else :
if scene . movie_path :
video = load_video_as_np_array ( video_path )
print ( " \n Vid2vid processing " )
elif scene . image_path :
print ( " \n Img2vid processing " )
video = process_image ( scene . image_path , int ( scene . generate_movie_frames ) )
video = np . array ( video )
# Upscale video
if scene . video_to_video :
video = [
Image . fromarray ( frame ) . resize ( ( closest_divisible_64 ( int ( x * 2 ) ) , closest_divisible_64 ( int ( y * 2 ) ) ) )
for frame in video
]
video_frames = upscale (
prompt ,
video = video ,
strength = 1.00 - scene . image_power ,
negative_prompt = negative_prompt ,
num_inference_steps = movie_num_inference_steps ,
guidance_scale = movie_num_guidance ,
generator = generator ,
) . frames
# Generation of movie
else :
print ( " Generating Video " )
video_frames = pipe (
prompt ,
negative_prompt = negative_prompt ,
num_inference_steps = movie_num_inference_steps ,
guidance_scale = movie_num_guidance ,
height = y ,
width = x ,
num_frames = duration ,
generator = generator ,
) . frames
movie_model_card = addon_prefs . movie_model_card
if torch . cuda . is_available ( ) :
torch . cuda . empty_cache ( )
# Upscale video
if scene . video_to_video :
print ( " Upscale Video " )
if torch . cuda . is_available ( ) :
torch . cuda . empty_cache ( )
video = [ Image . fromarray ( frame ) . resize ( ( closest_divisible_64 ( x * 2 ) , closest_divisible_64 ( y * 2 ) ) ) for frame in video_frames ]
video_frames = upscale (
prompt ,
video = video ,
strength = 1.00 - scene . image_power ,
negative_prompt = negative_prompt ,
num_inference_steps = movie_num_inference_steps ,
guidance_scale = movie_num_guidance ,
generator = generator ,
) . frames
# Move to folder
src_path = export_to_video ( video_frames )
dst_path = solve_path ( clean_filename ( str ( seed ) + " _ " + prompt ) + " .mp4 " )
print ( src_path )
print ( dst_path )
shutil . move ( src_path , dst_path )
# Add strip
if not os . path . isfile ( dst_path ) :
print ( " No resulting file found. " )
return { " CANCELLED " }
for window in bpy . context . window_manager . windows :
screen = window . screen
for area in screen . areas :
if area . type == " SEQUENCE_EDITOR " :
from bpy import context
with context . temp_override ( window = window , area = area ) :
bpy . ops . sequencer . movie_strip_add (
filepath = dst_path ,
frame_start = start_frame ,
channel = empty_channel ,
fit_method = " FIT " ,
adjust_playback_rate = True ,
sound = False ,
use_framerate = False ,
)
strip = scene . sequence_editor . active_strip
strip . transform . filter = " SUBSAMPLING_3x3 "
scene . sequence_editor . active_strip = strip
strip . name = str ( seed ) + " _ " + prompt
strip . use_proxy = True
bpy . ops . sequencer . rebuild_proxy ( )
if i > 0 :
scene . frame_current = (
scene . sequence_editor . active_strip . frame_final_start
)
# Redraw UI to display the new strip. Remove this if Blender crashes: https://docs.blender.org/api/current/info_gotcha.html#can-i-redraw-during-script-execution
bpy . ops . wm . redraw_timer ( type = " DRAW_WIN_SWAP " , iterations = 1 )
break
# clear the VRAM
if torch . cuda . is_available ( ) :
torch . cuda . empty_cache ( )
bpy . types . Scene . movie_path = " "
bpy . ops . renderreminder . play_notification ( )
scene . frame_current = current_frame
return { " FINISHED " }
class SEQUENCER_OT_generate_audio ( Operator ) :
""" Generate Audio """
bl_idname = " sequencer.generate_audio "
bl_label = " Prompt "
bl_description = " Convert text to audio "
bl_options = { " REGISTER " , " UNDO " }
def execute ( self , context ) :
scene = context . scene
if not scene . generate_movie_prompt :
self . report ( { " INFO " } , " Text prompt in the Generative AI tab is empty! " )
return { " CANCELLED " }
if not scene . sequence_editor :
scene . sequence_editor_create ( )
preferences = context . preferences
addon_prefs = preferences . addons [ __name__ ] . preferences
current_frame = scene . frame_current
prompt = scene . generate_movie_prompt
negative_prompt = scene . generate_movie_negative_prompt
movie_num_inference_steps = scene . movie_num_inference_steps
movie_num_guidance = scene . movie_num_guidance
audio_length_in_s = scene . audio_length_in_f / (
scene . render . fps / scene . render . fps_base
)
try :
import torch
if addon_prefs . audio_model_card == " cvssp/audioldm-s-full-v2 " :
from diffusers import AudioLDMPipeline
import scipy
# from bark import SAMPLE_RATE, generate_audio, preload_models
from IPython . display import Audio
from scipy . io . wavfile import write as write_wav
import xformers
if addon_prefs . audio_model_card == " facebook/audiogen-medium " :
import torchaudio
from audiocraft . models import AudioGen
from audiocraft . data . audio import audio_write
from scipy . io . wavfile import write as write_wav
if addon_prefs . audio_model_card == " bark " :
os . environ [ " CUDA_VISIBLE_DEVICES " ] = " 0 "
import numpy as np
from bark . generation import (
generate_text_semantic ,
preload_models ,
)
from bark . api import semantic_to_waveform
from bark import generate_audio , SAMPLE_RATE
from scipy . io . wavfile import write as write_wav
except ModuleNotFoundError :
print ( " Dependencies needs to be installed in the add-on preferences. " )
self . report (
{ " INFO " } ,
" Dependencies needs to be installed in the add-on preferences. " ,
)
return { " CANCELLED " }
show_system_console ( True )
set_system_console_topmost ( True )
# clear the VRAM
if torch . cuda . is_available ( ) :
torch . cuda . empty_cache ( )
if addon_prefs . audio_model_card == " cvssp/audioldm-s-full-v2 " :
repo_id = addon_prefs . audio_model_card
pipe = AudioLDMPipeline . from_pretrained (
repo_id
) # , torch_dtype=torch.float16z
if low_vram :
pipe . enable_model_cpu_offload ( )
# pipe.unet.enable_forward_chunking(chunk_size=1, dim=1)
# pipe.unet.added_cond_kwargs={}
pipe . enable_vae_slicing ( )
#pipe.enable_xformers_memory_efficient_attention()
else :
pipe . to ( " cuda " )
elif addon_prefs . audio_model_card == " facebook/audiogen-medium " :
pipe = AudioGen . get_pretrained ( " facebook/audiogen-medium " )
pipe = pipe . to ( " cuda " )
else : # bark
preload_models (
text_use_small = True ,
coarse_use_small = True ,
fine_use_gpu = True ,
fine_use_small = True ,
)
for i in range ( scene . movie_num_batch ) :
if i > 0 :
empty_channel = scene . sequence_editor . active_strip . channel
start_frame = (
scene . sequence_editor . active_strip . frame_final_start
+ scene . sequence_editor . active_strip . frame_final_duration
)
scene . frame_current = (
scene . sequence_editor . active_strip . frame_final_start
)
else :
empty_channel = find_first_empty_channel (
scene . frame_current ,
100000000000000000000 ,
)
start_frame = scene . frame_current
if addon_prefs . audio_model_card == " bark " :
rate = 24000
GEN_TEMP = 0.6
SPEAKER = " v2/ " + scene . languages + " _ " + scene . speakers # "v2/"+
silence = np . zeros ( int ( 0.25 * rate ) ) # quarter second of silence
prompt = context . scene . generate_movie_prompt
prompt = prompt . replace ( " \n " , " " ) . strip ( )
sentences = split_and_recombine_text (
prompt , desired_length = 90 , max_length = 150
)
pieces = [ ]
for sentence in sentences :
print ( sentence )
semantic_tokens = generate_text_semantic (
sentence ,
history_prompt = SPEAKER ,
temp = GEN_TEMP ,
# min_eos_p=0.1, # this controls how likely the generation is to end
)
audio_array = semantic_to_waveform (
semantic_tokens , history_prompt = SPEAKER
)
pieces + = [ audio_array , silence . copy ( ) ]
audio = np . concatenate (
pieces
) # Audio(np.concatenate(pieces), rate=rate)
filename = solve_path ( clean_filename ( prompt + " .wav " ) )
# Write the combined audio to a file
write_wav ( filename , rate , audio . transpose ( ) )
else : # AudioLDM
seed = context . scene . movie_num_seed
seed = (
seed
if not context . scene . movie_use_random
else random . randint ( 0 , 999999 )
)
context . scene . movie_num_seed = seed
# Use cuda if possible
if torch . cuda . is_available ( ) :
generator = (
torch . Generator ( " cuda " ) . manual_seed ( seed ) if seed != 0 else None
)
else :
if seed != 0 :
generator = torch . Generator ( )
generator . manual_seed ( seed )
else :
generator = None
prompt = context . scene . generate_movie_prompt
# Options: https://huggingface.co/docs/diffusers/main/en/api/pipelines/audioldm
audio = pipe (
prompt ,
num_inference_steps = movie_num_inference_steps ,
audio_length_in_s = audio_length_in_s ,
guidance_scale = movie_num_guidance ,
generator = generator ,
) . audios [ 0 ]
rate = 16000
filename = solve_path ( prompt + " .wav " )
write_wav ( filename , rate , audio . transpose ( ) ) # .transpose()
filepath = filename
if os . path . isfile ( filepath ) :
empty_channel = empty_channel
strip = scene . sequence_editor . sequences . new_sound (
name = prompt ,
filepath = filepath ,
channel = empty_channel ,
frame_start = start_frame ,
)
scene . sequence_editor . active_strip = strip
if i > 0 :
scene . frame_current = (
scene . sequence_editor . active_strip . frame_final_start
)
# Redraw UI to display the new strip. Remove this if Blender crashes: https://docs.blender.org/api/current/info_gotcha.html#can-i-redraw-during-script-execution
bpy . ops . wm . redraw_timer ( type = " DRAW_WIN_SWAP " , iterations = 1 )
else :
print ( " No resulting file found! " )
# clear the VRAM
if torch . cuda . is_available ( ) :
torch . cuda . empty_cache ( )
bpy . ops . renderreminder . play_notification ( )
return { " FINISHED " }
class SEQUENCER_OT_generate_image ( Operator ) :
""" Generate Image """
bl_idname = " sequencer.generate_image "
bl_label = " Prompt "
bl_description = " Convert text to image "
bl_options = { " REGISTER " , " UNDO " }
def execute ( self , context ) :
scene = context . scene
if scene . generate_movie_prompt == " " :
self . report ( { " INFO " } , " Text prompt in the Generative AI tab is empty! " )
return { " CANCELLED " }
show_system_console ( True )
set_system_console_topmost ( True )
scene = context . scene
seq_editor = scene . sequence_editor
if not seq_editor :
scene . sequence_editor_create ( )
try :
from diffusers import DiffusionPipeline , DPMSolverMultistepScheduler
from diffusers . utils import pt_to_pil
import torch
import requests
from diffusers . utils import load_image
except ModuleNotFoundError :
print ( " Dependencies needs to be installed in the add-on preferences. " )
self . report (
{ " INFO " } ,
" Dependencies needs to be installed in the add-on preferences. " ,
)
return { " CANCELLED " }
# clear the VRAM
if torch . cuda . is_available ( ) :
torch . cuda . empty_cache ( )
current_frame = scene . frame_current
prompt = style_prompt ( scene . generate_movie_prompt ) [ 0 ]
negative_prompt = scene . generate_movie_negative_prompt + " , " + style_prompt ( scene . generate_movie_prompt ) [ 1 ] + " , nsfw nude nudity "
image_x = scene . generate_movie_x
image_y = scene . generate_movie_y
x = scene . generate_movie_x = closest_divisible_64 ( image_x )
y = scene . generate_movie_y = closest_divisible_64 ( image_y )
duration = scene . generate_movie_frames
image_num_inference_steps = scene . movie_num_inference_steps
image_num_guidance = scene . movie_num_guidance
preferences = context . preferences
addon_prefs = preferences . addons [ __name__ ] . preferences
image_model_card = addon_prefs . image_model_card
do_refine = ( scene . refine_sd and image_model_card == " stabilityai/stable-diffusion-xl-base-1.0 " ) or scene . image_path
# LOADING MMODELS
# Models for stable diffusion
if not image_model_card == " DeepFloyd/IF-I-M-v1.0 " :
pipe = DiffusionPipeline . from_pretrained (
image_model_card ,
torch_dtype = torch . float16 ,
variant = " fp16 " ,
#use_safetensors=True,
)
pipe . scheduler = DPMSolverMultistepScheduler . from_config ( pipe . scheduler . config )
if low_vram :
torch . cuda . set_per_process_memory_fraction ( 0.95 ) # 6 GB VRAM
pipe . enable_model_cpu_offload ( )
# pipe.unet.enable_forward_chunking(chunk_size=1, dim=1)
#pipe.unet.added_cond_kwargs={}
pipe . enable_vae_slicing ( )
#pipe.enable_xformers_memory_efficient_attention()
else :
pipe . to ( " cuda " )
# DeepFloyd
elif image_model_card == " DeepFloyd/IF-I-M-v1.0 " :
from huggingface_hub . commands . user import login
result = login ( token = addon_prefs . hugginface_token )
# torch.cuda.set_per_process_memory_fraction(0.85) # 6 GB VRAM
# stage 1
stage_1 = DiffusionPipeline . from_pretrained (
" DeepFloyd/IF-I-M-v1.0 " , variant = " fp16 " , torch_dtype = torch . float16
)
if low_vram :
stage_1 . enable_model_cpu_offload ( )
stage_1 . unet . enable_forward_chunking ( chunk_size = 1 , dim = 1 )
stage_1 . enable_vae_slicing ( )
stage_1 . enable_xformers_memory_efficient_attention ( )
else :
stage_1 . to ( " cuda " )
# stage 2
stage_2 = DiffusionPipeline . from_pretrained (
" DeepFloyd/IF-II-M-v1.0 " ,
text_encoder = None ,
variant = " fp16 " ,
torch_dtype = torch . float16 ,
)
if low_vram :
stage_2 . enable_model_cpu_offload ( )
# stage_2.unet.enable_forward_chunking(chunk_size=1, dim=1)
stage_2 . enable_vae_slicing ( )
stage_2 . enable_xformers_memory_efficient_attention ( )
else :
stage_2 . to ( " cuda " )
# stage 3
safety_modules = {
" feature_extractor " : stage_1 . feature_extractor ,
" safety_checker " : stage_1 . safety_checker ,
" watermarker " : stage_1 . watermarker ,
}
stage_3 = DiffusionPipeline . from_pretrained (
" stabilityai/stable-diffusion-x4-upscaler " ,
* * safety_modules ,
torch_dtype = torch . float16 ,
)
if low_vram :
stage_3 . enable_model_cpu_offload ( )
# stage_3.unet.enable_forward_chunking(chunk_size=1, dim=1)
stage_3 . enable_vae_slicing ( )
stage_3 . enable_xformers_memory_efficient_attention ( )
else :
stage_3 . to ( " cuda " )
# Add refiner model if chosen.
if do_refine :
from diffusers import StableDiffusionXLImg2ImgPipeline
refiner = StableDiffusionXLImg2ImgPipeline . from_pretrained (
" stabilityai/stable-diffusion-xl-refiner-1.0 " ,
text_encoder_2 = pipe . text_encoder_2 ,
vae = pipe . vae ,
torch_dtype = torch . float16 ,
#use_safetensors=True,
variant = " fp16 " ,
)
if low_vram :
refiner . enable_model_cpu_offload ( )
# refiner.unet.enable_forward_chunking(chunk_size=1, dim=1)
#refiner.unet.added_cond_kwargs={}
refiner . enable_vae_slicing ( )
#refiner.enable_xformers_memory_efficient_attention()
else :
refiner . to ( " cuda " )
# Main Generate Loop:
for i in range ( scene . movie_num_batch ) :
# Find free space for the strip in the timeline.
if i > 0 :
empty_channel = scene . sequence_editor . active_strip . channel
start_frame = (
scene . sequence_editor . active_strip . frame_final_start
+ scene . sequence_editor . active_strip . frame_final_duration
)
scene . frame_current = (
scene . sequence_editor . active_strip . frame_final_start
)
else :
empty_channel = find_first_empty_channel (
scene . frame_current ,
( scene . movie_num_batch * duration ) + scene . frame_current ,
)
start_frame = scene . frame_current
# Generate seed.
seed = context . scene . movie_num_seed
seed = (
seed
if not context . scene . movie_use_random
else random . randint ( 0 , 999999 )
)
context . scene . movie_num_seed = seed
# Use cuda if possible.
if torch . cuda . is_available ( ) :
generator = (
torch . Generator ( " cuda " ) . manual_seed ( seed ) if seed != 0 else None
)
else :
if seed != 0 :
generator = torch . Generator ( )
generator . manual_seed ( seed )
else :
generator = None
# DeepFloyd process:
if image_model_card == " DeepFloyd/IF-I-M-v1.0 " :
print ( " DeepFloyd " )
prompt_embeds , negative_embeds = stage_1 . encode_prompt (
prompt , negative_prompt
)
# stage 1
image = stage_1 (
prompt_embeds = prompt_embeds ,
negative_prompt_embeds = negative_embeds ,
generator = generator ,
output_type = " pt " ,
) . images
pt_to_pil ( image ) [ 0 ] . save ( " ./if_stage_I.png " )
# stage 2
image = stage_2 (
image = image ,
prompt_embeds = prompt_embeds ,
negative_prompt_embeds = negative_embeds ,
generator = generator ,
output_type = " pt " ,
) . images
pt_to_pil ( image ) [ 0 ] . save ( " ./if_stage_II.png " )
# stage 3
image = stage_3 (
prompt = prompt , image = image , noise_level = 100 , generator = generator
) . images
# image[0].save("./if_stage_III.png")
image = image [ 0 ]
# Img2img
elif scene . image_path :
print ( " Img2img " )
init_image = load_image ( scene . image_path ) . convert ( " RGB " )
image = refiner (
prompt = prompt ,
image = init_image ,
strength = 1.00 - scene . image_power ,
negative_prompt = negative_prompt ,
num_inference_steps = image_num_inference_steps ,
guidance_scale = image_num_guidance ,
generator = generator ,
# output_type="latent" if scene.refine_sd else "pil",
) . images [ 0 ]
# Generate
else :
print ( " Generating " )
image = pipe (
prompt ,
negative_prompt = negative_prompt ,
num_inference_steps = image_num_inference_steps ,
guidance_scale = image_num_guidance ,
height = y ,
width = x ,
generator = generator ,
) . images [ 0 ]
# Add refiner
if scene . refine_sd : # and image_model_card == "stabilityai/stable-diffusion-xl-base-1.0") or scene.image_path:
print ( " Refining " )
image = refiner (
prompt ,
negative_prompt = negative_prompt ,
num_inference_steps = image_num_inference_steps ,
denoising_start = 0.8 ,
guidance_scale = image_num_guidance ,
image = image ,
#image=image[None, :],
) . images [ 0 ]
# Move to folder
filename = clean_filename (
str ( seed ) + " _ " + context . scene . generate_movie_prompt
)
out_path = solve_path ( filename + " .png " )
image . save ( out_path )
# Add strip
if os . path . isfile ( out_path ) :
strip = scene . sequence_editor . sequences . new_image (
name = str ( seed ) + " _ " + context . scene . generate_movie_prompt ,
frame_start = start_frame ,
filepath = out_path ,
channel = empty_channel ,
fit_method = " FIT " ,
)
strip . frame_final_duration = scene . generate_movie_frames
strip . transform . filter = " SUBSAMPLING_3x3 "
scene . sequence_editor . active_strip = strip
if i > 0 :
scene . frame_current = (
scene . sequence_editor . active_strip . frame_final_start
)
strip . use_proxy = True
bpy . ops . sequencer . rebuild_proxy ( )
# Redraw UI to display the new strip. Remove this if Blender crashes: https://docs.blender.org/api/current/info_gotcha.html#can-i-redraw-during-script-execution
bpy . ops . wm . redraw_timer ( type = " DRAW_WIN_SWAP " , iterations = 1 )
else :
print ( " No resulting file found. " )
# clear the VRAM
if torch . cuda . is_available ( ) :
torch . cuda . empty_cache ( )
bpy . ops . renderreminder . play_notification ( )
scene . frame_current = current_frame
# clear the VRAM
if torch . cuda . is_available ( ) :
torch . cuda . empty_cache ( )
return { " FINISHED " }
class SEQUENCER_OT_strip_to_generatorAI ( Operator ) :
""" Convert selected text strips to Generative AI """
bl_idname = " sequencer.text_to_generator "
bl_label = " Generative AI "
bl_options = { " INTERNAL " }
bl_description = " Adds selected strips as inputs to the Generative AI process "
@classmethod
def poll ( cls , context ) :
return context . scene and context . scene . sequence_editor
def execute ( self , context ) :
preferences = context . preferences
addon_prefs = preferences . addons [ __name__ ] . preferences
play_sound = addon_prefs . playsound
addon_prefs . playsound = False
scene = context . scene
sequencer = bpy . ops . sequencer
sequences = bpy . context . sequences
strips = context . selected_sequences
prompt = scene . generate_movie_prompt
current_frame = scene . frame_current
type = scene . generatorai_typeselect
seed = scene . movie_num_seed
use_random = scene . movie_use_random
if not strips :
self . report ( { " INFO " } , " Select strips for batch processing. " )
return { " CANCELLED " }
else :
print ( " \n Batch processing started (ctrl+c to cancel). " )
for count , strip in enumerate ( strips ) :
if strip . type == " TEXT " :
if strip . text :
print ( " \n " + str ( count + 1 ) + " / " + str ( len ( strips ) ) + " Prompt: " + strip . text + " , " + prompt )
scene . generate_movie_prompt = strip . text + " , " + prompt
scene . frame_current = strip . frame_final_start
if type == " movie " :
sequencer . generate_movie ( )
if type == " audio " :
sequencer . generate_audio ( )
if type == " image " :
sequencer . generate_image ( )
scene . generate_movie_prompt = prompt
if strip . type == " IMAGE " :
strip_dirname = os . path . dirname ( strip . directory )
image_path = bpy . path . abspath (
os . path . join ( strip_dirname , strip . elements [ 0 ] . filename )
)
bpy . types . Scene . image_path = image_path
if strip . name :
strip_prompt = os . path . splitext ( strip . name ) [ 0 ]
seed_nr = extract_numbers ( str ( strip_prompt ) )
if seed_nr :
file_seed = int ( seed_nr )
if file_seed :
strip_prompt = ( strip_prompt . replace ( str ( file_seed ) + " _ " , " " ) )
context . scene . movie_use_random = False
context . scene . movie_num_seed = file_seed
styled_prompt = style_prompt ( strip_prompt + " , " + prompt ) [ 0 ]
print ( " \n " + str ( count + 1 ) + " / " + str ( len ( strips ) ) + " Prompt: " + styled_prompt )
scene . generate_movie_prompt = styled_prompt
scene . frame_current = strip . frame_final_start
if type == " movie " :
sequencer . generate_movie ( )
if type == " audio " :
sequencer . generate_audio ( )
if type == " image " :
sequencer . generate_image ( )
context . scene . generate_movie_prompt = prompt
context . scene . movie_use_random = use_random
context . scene . movie_num_seed = seed
bpy . types . Scene . image_path = " "
if strip . type == " MOVIE " :
movie_path = bpy . path . abspath (
strip . filepath
)
bpy . types . Scene . movie_path = movie_path
if strip . name :
strip_prompt = os . path . splitext ( strip . name ) [ 0 ]
seed_nr = extract_numbers ( str ( strip_prompt ) )
if seed_nr :
file_seed = int ( seed_nr )
if file_seed :
strip_prompt = ( strip_prompt . replace ( str ( file_seed ) + " _ " , " " ) )
context . scene . movie_use_random = False
context . scene . movie_num_seed = file_seed
styled_prompt = style_prompt ( strip_prompt + " , " + prompt ) [ 0 ]
print ( " \n " + str ( count + 1 ) + " / " + str ( len ( strips ) ) + " Prompt: " + styled_prompt )
scene . generate_movie_prompt = styled_prompt
scene . generate_movie_prompt = prompt
scene . frame_current = strip . frame_final_start
if type == " movie " :
sequencer . generate_movie ( )
if type == " audio " :
sequencer . generate_audio ( )
if type == " image " :
sequencer . generate_image ( )
scene . generate_movie_prompt = prompt
context . scene . movie_use_random = use_random
context . scene . movie_num_seed = seed
bpy . types . Scene . movie_path = " "
scene . frame_current = current_frame
scene . generate_movie_prompt = prompt
context . scene . movie_use_random = use_random
context . scene . movie_num_seed = seed
addon_prefs . playsound = play_sound
bpy . ops . renderreminder . play_notification ( )
print ( " Batch processing finished. " )
return { " FINISHED " }
classes = (
GeneratorAddonPreferences ,
SEQUENCER_OT_generate_movie ,
SEQUENCER_OT_generate_audio ,
SEQUENCER_OT_generate_image ,
SEQEUNCER_PT_generate_ai ,
GENERATOR_OT_sound_notification ,
SEQUENCER_OT_strip_to_generatorAI ,
GENERATOR_OT_install ,
GENERATOR_OT_uninstall ,
)
def register ( ) :
bpy . types . Scene . generate_movie_prompt = bpy . props . StringProperty (
name = " generate_movie_prompt " ,
default = " " ,
)
bpy . types . Scene . generate_movie_negative_prompt = bpy . props . StringProperty (
name = " generate_movie_negative_prompt " ,
default = " " ,
)
bpy . types . Scene . generate_audio_prompt = bpy . props . StringProperty (
name = " generate_audio_prompt " , default = " "
)
bpy . types . Scene . generate_movie_x = bpy . props . IntProperty (
name = " generate_movie_x " ,
default = 1024 ,
step = 64 ,
min = 192 ,
max = 1536 ,
)
bpy . types . Scene . generate_movie_y = bpy . props . IntProperty (
name = " generate_movie_y " ,
default = 512 ,
step = 64 ,
min = 192 ,
max = 1536 ,
)
# The number of frames to be generated.
bpy . types . Scene . generate_movie_frames = bpy . props . IntProperty (
name = " generate_movie_frames " ,
default = 6 ,
min = 1 ,
max = 125 ,
)
# The number of denoising steps. More denoising steps usually lead to a higher quality audio at the expense of slower inference.
bpy . types . Scene . movie_num_inference_steps = bpy . props . IntProperty (
name = " movie_num_inference_steps " ,
default = 25 ,
min = 1 ,
max = 100 ,
)
# The number of videos to generate.
bpy . types . Scene . movie_num_batch = bpy . props . IntProperty (
name = " movie_num_batch " ,
default = 1 ,
min = 1 ,
max = 100 ,
)
# The seed number.
bpy . types . Scene . movie_num_seed = bpy . props . IntProperty (
name = " movie_num_seed " ,
default = 1 ,
min = 1 ,
max = 2147483647 ,
)
# The seed number.
bpy . types . Scene . movie_use_random = bpy . props . BoolProperty (
name = " movie_use_random " ,
default = 1 ,
)
# The guidance number.
bpy . types . Scene . movie_num_guidance = bpy . props . FloatProperty (
name = " movie_num_guidance " ,
default = 9.0 ,
min = 1 ,
max = 100 ,
)
# The frame audio duration.
bpy . types . Scene . audio_length_in_f = bpy . props . IntProperty (
name = " audio_length_in_f " ,
default = 80 ,
min = 1 ,
max = 10000 ,
)
bpy . types . Scene . generatorai_typeselect = bpy . props . EnumProperty (
name = " Sound " ,
items = [
( " movie " , " Video " , " Generate Video " ) ,
( " image " , " Image " , " Generate Image " ) ,
( " audio " , " Audio " , " Generate Audio " ) ,
] ,
default = " movie " ,
)
bpy . types . Scene . speakers = bpy . props . EnumProperty (
name = " Speakers " ,
items = [
( " speaker_0 " , " Speaker 0 " , " " ) ,
( " speaker_1 " , " Speaker 1 " , " " ) ,
( " speaker_2 " , " Speaker 2 " , " " ) ,
( " speaker_3 " , " Speaker 3 " , " " ) ,
( " speaker_4 " , " Speaker 4 " , " " ) ,
( " speaker_5 " , " Speaker 5 " , " " ) ,
( " speaker_6 " , " Speaker 6 " , " " ) ,
( " speaker_7 " , " Speaker 7 " , " " ) ,
( " speaker_8 " , " Speaker 8 " , " " ) ,
( " speaker_9 " , " Speaker 9 " , " " ) ,
] ,
default = " speaker_3 " ,
)
bpy . types . Scene . languages = bpy . props . EnumProperty (
name = " Languages " ,
items = [
( " en " , " English " , " " ) ,
( " de " , " German " , " " ) ,
( " es " , " Spanish " , " " ) ,
( " fr " , " French " , " " ) ,
( " hi " , " Hindi " , " " ) ,
( " it " , " Italian " , " " ) ,
( " ja " , " Japanese " , " " ) ,
( " ko " , " Korean " , " " ) ,
( " pl " , " Polish " , " " ) ,
( " pt " , " Portuguese " , " " ) ,
( " ru " , " Russian " , " " ) ,
( " tr " , " Turkish " , " " ) ,
( " zh " , " Chinese, simplified " , " " ) ,
] ,
default = " en " ,
)
# Upscale
bpy . types . Scene . video_to_video = bpy . props . BoolProperty (
name = " video_to_video " ,
default = 0 ,
)
# Refine SD
bpy . types . Scene . refine_sd = bpy . props . BoolProperty (
name = " refine_sd " ,
default = 1 ,
)
# movie path
bpy . types . Scene . movie_path = bpy . props . StringProperty ( name = " movie_path " , default = " " )
bpy . types . Scene . movie_path = " "
# image path
bpy . types . Scene . image_path = bpy . props . StringProperty ( name = " image_path " , default = " " )
bpy . types . Scene . image_path = " "
bpy . types . Scene . input_strips = bpy . props . EnumProperty (
items = [
( " generate " , " No Input " , " No Input " ) ,
( " input_strips " , " Strips " , " Selected Strips " ) ,
] ,
default = " generate " ,
update = input_strips_updated ,
)
bpy . types . Scene . image_power = bpy . props . FloatProperty (
name = " image_power " ,
default = 0.95 ,
min = 0.05 ,
max = 0.95 ,
)
styles_array = load_styles ( os . path . dirname ( os . path . abspath ( __file__ ) ) + " /styles.json " )
if styles_array :
bpy . types . Scene . generatorai_styles = bpy . props . EnumProperty (
name = " Generator AI Styles " ,
items = [ ( " no_style " , " No Style " , " No Style " ) ] + styles_array ,
default = " no_style " ,
)
for cls in classes :
bpy . utils . register_class ( cls )
def unregister ( ) :
for cls in classes :
bpy . utils . unregister_class ( cls )
del bpy . types . Scene . generate_movie_prompt
del bpy . types . Scene . generate_audio_prompt
del bpy . types . Scene . generate_movie_x
del bpy . types . Scene . generate_movie_y
del bpy . types . Scene . movie_num_inference_steps
del bpy . types . Scene . movie_num_batch
del bpy . types . Scene . movie_num_seed
del bpy . types . Scene . movie_use_random
del bpy . types . Scene . movie_num_guidance
del bpy . types . Scene . generatorai_typeselect
del bpy . types . Scene . movie_path
del bpy . types . Scene . image_path
del bpy . types . Scene . refine_sd
# del bpy.types.Scene.denoising_strength
del bpy . types . Scene . generatorai_styles
#bpy.types.SEQUENCER_MT_add.remove(panel_text_to_generatorAI)
if __name__ == " __main__ " :
unregister ( )
register ( )