Generative AI for the Blender VSE: Text, video or image to video, image and audio in Blender Video Sequence Editor.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4624 lines
172 KiB

bl_info = {
"name": "Pallaidium - Generative AI",
"author": "tintwotin",
"version": (1, 8),
"blender": (3, 4, 0),
"location": "Video Sequence Editor > Sidebar > Generative AI",
"description": "AI Generate media in the VSE",
"category": "Sequencer",
}
# TO DO: Style title check, long prompts, SDXL controlnet,Move prints.
1 year ago
import bpy, ctypes, random
from bpy.types import Operator, Panel, AddonPreferences, UIList, PropertyGroup
from bpy.props import (
StringProperty,
BoolProperty,
EnumProperty,
IntProperty,
FloatProperty,
)
import site, platform, json
import subprocess
import sys, os, aud, re
import string
from os.path import dirname, realpath, isdir, join, basename
import shutil
from datetime import date
try:
exec("import torch")
if torch.cuda.is_available():
gfx_device = "cuda"
elif torch.backends.mps.is_available():
gfx_device = "mps"
else:
gfx_device = "cpu"
except ModuleNotFoundError:
print("Pallaidium dependencies needs to be installed and then Blender needs to be restarted.")
os_platform = platform.system() # 'Linux', 'Darwin', 'Java', 'Windows'
def show_system_console(show):
if os_platform == "Windows":
# https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-showwindow
SW_HIDE = 0
SW_SHOW = 5
ctypes.windll.user32.ShowWindow(
ctypes.windll.kernel32.GetConsoleWindow(), SW_SHOW # if show else SW_HIDE
)
def set_system_console_topmost(top):
if os_platform == "Windows":
# https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-setwindowpos
HWND_NOTOPMOST = -2
HWND_TOPMOST = -1
HWND_TOP = 0
SWP_NOMOVE = 0x0002
SWP_NOSIZE = 0x0001
SWP_NOZORDER = 0x0004
ctypes.windll.user32.SetWindowPos(
ctypes.windll.kernel32.GetConsoleWindow(),
HWND_TOP if top else HWND_NOTOPMOST,
0,
0,
0,
0,
SWP_NOMOVE | SWP_NOSIZE | SWP_NOZORDER,
)
# normalize text, remove redundant whitespace and convert non-ascii quotes to ascii
def split_and_recombine_text(text, desired_length=200, max_length=300):
"""Split text it into chunks of a desired length trying to keep sentences intact."""
text = re.sub(r"\n\n+", "\n", text)
text = re.sub(r"\s+", " ", text)
text = re.sub(r"[“”]", '"', text)
rv = []
in_quote = False
current = ""
split_pos = []
pos = -1
end_pos = len(text) - 1
def seek(delta):
nonlocal pos, in_quote, current
is_neg = delta < 0
for _ in range(abs(delta)):
if is_neg:
pos -= 1
current = current[:-1]
else:
pos += 1
current += text[pos]
if text[pos] == '"':
in_quote = not in_quote
return text[pos]
def peek(delta):
p = pos + delta
return text[p] if p < end_pos and p >= 0 else ""
def commit():
nonlocal rv, current, split_pos
rv.append(current)
current = ""
split_pos = []
while pos < end_pos:
c = seek(1)
# do we need to force a split?
if len(current) >= max_length:
if len(split_pos) > 0 and len(current) > (desired_length / 2):
# we have at least one sentence and we are over half the desired length, seek back to the last split
d = pos - split_pos[-1]
seek(-d)
else:
# no full sentences, seek back until we are not in the middle of a word and split there
while c not in "!?.,\n " and pos > 0 and len(current) > desired_length:
c = seek(-1)
commit()
# check for sentence boundaries
elif not in_quote and (c in "!?\n" or (c == "." and peek(1) in "\n ")):
# seek forward if we have consecutive boundary markers but still within the max length
while (
pos < len(text) - 1 and len(current) < max_length and peek(1) in "!?.,"
):
c = seek(1)
split_pos.append(pos)
if len(current) >= desired_length:
commit()
# treat end of quote as a boundary if its followed by a space or newline
elif in_quote and peek(1) == '"' and peek(2) in "\n ":
seek(2)
split_pos.append(pos)
rv.append(current)
# clean up, remove lines with only whitespace or punctuation
rv = [s.strip() for s in rv]
rv = [s for s in rv if len(s) > 0 and not re.match(r"^[\s\.,;:!?]*$", s)]
return rv
def extract_numbers(input_string):
numbers = re.findall(r"\d+", input_string)
if numbers:
return int(numbers[0])
else:
return None
def load_styles(json_filename):
styles_array = []
try:
with open(json_filename, "r") as json_file:
data = json.load(json_file)
except FileNotFoundError:
print(f"JSON file '{json_filename}' not found.")
data = []
for item in data:
name = item["name"]
prompt = item["prompt"]
negative_prompt = item["negative_prompt"]
styles_array.append(
(negative_prompt.lower().replace(" ", "_"), name.title(), prompt)
)
return styles_array
def style_prompt(prompt):
selected_entry_key = bpy.context.scene.generatorai_styles
return_array = []
if selected_entry_key:
styles_array = load_styles(
os.path.dirname(os.path.abspath(__file__)) + "/styles.json"
)
if styles_array:
selected_entry = next(
(item for item in styles_array if item[0] == selected_entry_key), None
)
if selected_entry:
selected_entry_list = list(selected_entry)
return_array.append(selected_entry_list[2].replace("{prompt}", prompt))
return_array.append(selected_entry_list[0].replace("_", " "))
return return_array
return_array.append(prompt)
return_array.append(bpy.context.scene.generate_movie_negative_prompt)
return return_array
def closest_divisible_32(num):
# Determine the remainder when num is divided by 64
remainder = num % 32
# If the remainder is less than or equal to 16, return num - remainder,
# but ensure the result is not less than 192
if remainder <= 16:
result = num - remainder
return max(result, 192)
# Otherwise, return num + (32 - remainder)
else:
return max(num + (32 - remainder), 192)
def closest_divisible_128(num):
# Determine the remainder when num is divided by 128
remainder = num % 128
# If the remainder is less than or equal to 64, return num - remainder,
# but ensure the result is not less than 256
if remainder <= 64:
result = num - remainder
return max(result, 256)
# Otherwise, return num + (32 - remainder)
else:
return max(num + (64 - remainder), 256)
def find_first_empty_channel(start_frame, end_frame):
for ch in range(1, len(bpy.context.scene.sequence_editor.sequences_all) + 1):
for seq in bpy.context.scene.sequence_editor.sequences_all:
if (
seq.channel == ch
and seq.frame_final_start < end_frame
and (seq.frame_final_start + seq.frame_final_duration) > start_frame
):
break
else:
return ch
return 1
def clean_filename(filename):
filename = filename[:50]
valid_chars = "-_,.() %s%s" % (string.ascii_letters, string.digits)
clean_filename = "".join(c if c in valid_chars else "_" for c in filename)
clean_filename = clean_filename.replace("\n", " ")
clean_filename = clean_filename.replace("\r", " ")
clean_filename = clean_filename.replace(" ", "_")
return clean_filename.strip()
def create_folder(folderpath):
try:
os.makedirs(folderpath)
return True
except FileExistsError:
# directory already exists
pass
return False
def solve_path(full_path):
preferences = bpy.context.preferences
addon_prefs = preferences.addons[__name__].preferences
name, ext = os.path.splitext(full_path)
dir_path, filename = os.path.split(name)
dir_path = os.path.join(addon_prefs.generator_ai, str(date.today()))
create_folder(dir_path)
cleaned_filename = clean_filename(filename)
new_filename = cleaned_filename + ext
i = 1
while os.path.exists(os.path.join(dir_path, new_filename)):
name, ext = os.path.splitext(new_filename)
new_filename = f"{name.rsplit('(', 1)[0]}({i}){ext}"
i += 1
return os.path.join(dir_path, new_filename)
def limit_string(my_string):
if len(my_string) > 77:
print(
"Warning: String is longer than 77 characters. Excessive string:",
my_string[77:],
)
return my_string[:77]
else:
return my_string
def delete_strip(input_strip):
if input_strip is None:
return
original_selection = [
strip
for strip in bpy.context.scene.sequence_editor.sequences_all
if strip.select
]
bpy.ops.sequencer.select_all(action="DESELECT")
input_strip.select = True
bpy.ops.sequencer.delete()
for strip in original_selection:
strip.select = True
def load_video_as_np_array(video_path):
import cv2
import numpy as np
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise IOError("Error opening video file")
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame)
cap.release()
return np.array(frames)
def load_first_frame(file_path):
import cv2, PIL, os
from diffusers.utils import load_image
extension = os.path.splitext(file_path)[
-1
].lower() # Convert to lowercase for case-insensitive comparison
valid_image_extensions = {
".sgi",
".rgb",
".bw",
".cin",
".dpx",
".png",
".jpg",
".jpeg",
".jp2",
".jp2",
".j2c",
".tga",
".exr",
".hdr",
".tif",
".tiff",
".webp",
}
valid_video_extensions = {
".avi",
".flc",
".mov",
".movie",
".mp4",
".m4v",
".m2v",
".m2t",
".m2ts",
".mts",
".ts",
".mv",
".avs",
".wmv",
".ogv",
".ogg",
".r3d",
".dv",
".mpeg",
".mpg",
".mpg2",
".vob",
".mkv",
".flv",
".divx",
".xvid",
".mxf",
".webm",
}
if extension in valid_image_extensions:
image = cv2.imread(file_path)
# if image is not None:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
return PIL.Image.fromarray(image)
if extension in valid_video_extensions:
# Try to open the file as a video
cap = cv2.VideoCapture(file_path)
# Check if the file was successfully opened as a video
if cap.isOpened():
# Read the first frame from the video
ret, frame = cap.read()
cap.release() # Release the video capture object
if ret:
# If the first frame was successfully read, it's a video
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return PIL.Image.fromarray(frame)
# If neither video nor image worked, return None
return None
def process_frames(frame_folder_path, target_width):
from PIL import Image
Image.MAX_IMAGE_PIXELS = None
import cv2
processed_frames = []
# List all image files in the folder
image_files = sorted(
[f for f in os.listdir(frame_folder_path) if f.endswith(".png")]
)
for image_file in image_files:
image_path = os.path.join(frame_folder_path, image_file)
img = Image.open(image_path)
# Process the image (resize and convert to RGB)
frame_width, frame_height = img.size
# Calculate the target height to maintain the original aspect ratio
target_height = int((target_width / frame_width) * frame_height)
# Ensure width and height are divisible by 64
target_width = closest_divisible_32(target_width)
target_height = closest_divisible_32(target_height)
img = img.resize((target_width, target_height), Image.Resampling.LANCZOS)
img = img.convert("RGB")
processed_frames.append(img)
return processed_frames
def process_video(input_video_path, output_video_path):
from PIL import Image
Image.MAX_IMAGE_PIXELS = None
import cv2
import shutil
scene = bpy.context.scene
movie_x = scene.generate_movie_x
# Create a temporary folder for storing frames
temp_image_folder = solve_path("temp_images")
if not os.path.exists(temp_image_folder):
os.makedirs(temp_image_folder)
# Open the video file using OpenCV
cap = cv2.VideoCapture(input_video_path)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
# Save each loaded frame as an image in the temp folder
for i in range(frame_count):
ret, frame = cap.read()
if not ret:
break
# Save the frame as an image in the temp folder
temp_image_path = os.path.join(temp_image_folder, f"frame_{i:04d}.png")
cv2.imwrite(temp_image_path, frame)
cap.release()
# Process frames using the separate function
processed_frames = process_frames(temp_image_folder, movie_x)
# Clean up: Delete the temporary image folder
shutil.rmtree(temp_image_folder)
return processed_frames
# Define the function for zooming effect
def zoomPan(img, zoom=1, angle=0, coord=None):
import cv2
cy, cx = [i / 2 for i in img.shape[:-1]] if coord is None else coord[::-1]
rot = cv2.getRotationMatrix2D((cx, cy), angle, zoom)
res = cv2.warpAffine(img, rot, img.shape[1::-1], flags=cv2.INTER_LINEAR)
return res
def process_image(image_path, frames_nr):
from PIL import Image
Image.MAX_IMAGE_PIXELS = None
import cv2, shutil
scene = bpy.context.scene
movie_x = scene.generate_movie_x
img = cv2.imread(image_path)
height, width, layers = img.shape
# Create a temporary folder for storing frames
temp_image_folder = solve_path("/temp_images")
if not os.path.exists(temp_image_folder):
os.makedirs(temp_image_folder)
max_zoom = 2.0 # Maximum Zoom level (should be > 1.0)
max_rot = 30 # Maximum rotation in degrees, set '0' for no rotation
# Make the loop for Zooming-in
i = 1
while i < frames_nr:
zLvl = 1.0 + ((i / (1 / (max_zoom - 1)) / frames_nr) * 0.005)
angle = 0 # i * max_rot / frames_nr
zoomedImg = zoomPan(img, zLvl, angle, coord=None)
output_path = os.path.join(temp_image_folder, f"frame_{i:04d}.png")
cv2.imwrite(output_path, zoomedImg)
i = i + 1
# Process frames using the separate function
processed_frames = process_frames(temp_image_folder, movie_x)
# Clean up: Delete the temporary image folder
shutil.rmtree(temp_image_folder)
cv2.destroyAllWindows()
return processed_frames
def low_vram():
import torch
total_vram = 0
for i in range(torch.cuda.device_count()):
properties = torch.cuda.get_device_properties(i)
total_vram += properties.total_memory
return (total_vram / (1024**3)) < 6.1 # Y/N under 6.1 GB?
def isWindows():
return os.name == "nt"
def isMacOS():
return os.name == "posix" and platform.system() == "Darwin"
def isLinux():
return os.name == "posix" and platform.system() == "Linux"
def python_exec():
import sys
if isWindows():
return os.path.join(sys.prefix, "bin", "python.exe")
elif isMacOS():
try:
# 2.92 and older
path = bpy.app.binary_path_python
except AttributeError:
# 2.93 and later
import sys
path = sys.executable
return os.path.abspath(path)
elif isLinux():
return os.path.join(sys.prefix, "sys.prefix/bin", "python")
else:
print("sorry, still not implemented for ", os.name, " - ", platform.system)
def import_module(self, module, install_module):
show_system_console(True)
set_system_console_topmost(True)
module = str(module)
python_exe = python_exec()
try:
subprocess.call([python_exe, "import ", packageName])
# exec("import " + module)
except: # ModuleNotFoundError:
# app_path = site.USER_SITE
# if app_path not in sys.path:
# sys.path.append(app_path)
# pybin = sys.executable
# target = os.path.join(sys.prefix, 'site-packages')
# if target not in sys.path:
# sys.path.append(target)
self.report({"INFO"}, "Installing: " + module + " module.")
print("Installing: " + module + " module")
subprocess.call([python_exe, "-m", "pip", "install", install_module])
# subprocess.check_call(
# [
# pybin,
# "-m",
# "pip",
# "install",
# install_module,
# "--no-warn-script-location",
# "--user",
# #'-t', target,
# ]
# )
try:
exec("import " + module)
except ModuleNotFoundError:
return False
return True
def install_modules(self):
os_platform = platform.system()
# app_path = site.USER_SITE
# if app_path not in sys.path:
# sys.path.append(app_path)
# pybin = sys.executable
# target = os.path.join(sys.prefix, 'site-packages')
# if target not in sys.path:
# sys.path.append(target)
pybin = python_exec()
print("Ensuring: pip")
try:
subprocess.call([pybin, "-m", "ensurepip"])
subprocess.call([pybin, "-m", "pip", "install", "--upgrade", "pip"])
except ImportError:
pass
#!pip install lmdb
#!pip install torch==2.1.0+cu121 torchvision==0.16.0+cu121 torchaudio==2.1.0 torchtext==0.16.0+cpu torchdata==0.7.0 --index-url https://download.pytorch.org/whl/cu121
# import_module(self, "xformers", "xformers")
try:
exec("import torch")
except ModuleNotFoundError:
subprocess.call([pybin, "-m", "pip", "install", "lmdb"])
self.report({"INFO"}, "Installing: torch module.")
print("Installing: torch module")
if os_platform == "Windows":
subprocess.check_call(
[
pybin,
"-m",
"pip",
"install",
"torch==2.1.0+cu121",
"--index-url",
"https://download.pytorch.org/whl/cu121",
"--no-warn-script-location",
# "--user",
]
)
subprocess.check_call(
[
pybin,
"-m",
"pip",
"install",
"torchvision==0.16.0+cu121",
"--index-url",
"https://download.pytorch.org/whl/cu121",
"--no-warn-script-location",
# "--user",
]
)
subprocess.check_call(
[
pybin,
"-m",
"pip",
"install",
"torchaudio==2.1.0",
"--index-url",
"https://download.pytorch.org/whl/cu121",
"--no-warn-script-location",
# "--user",
]
)
subprocess.check_call(
[
pybin,
"-m",
"pip",
"install",
"-U",
"xformers",
"--index-url",
"https://download.pytorch.org/whl/cu121",
"--no-warn-script-location",
# "--user",
]
)
else:
import_module(self, "torch", "torch")
import_module(self, "torchvision", "torchvision")
import_module(self, "torchaudio", "torchaudio")
import_module(self, "huggingface_hub", "huggingface_hub")
import_module(
self, "accelerate", "git+https://github.com/huggingface/accelerate.git"
)
# import_module(self, "transformers", "git+https://github.com/huggingface/transformers.git")
subprocess.check_call(
[
pybin,
"-m",
"pip",
"install",
"git+https://github.com/huggingface/transformers.git",
"--upgrade",
]
)
# subprocess.check_call([pybin, "-m", "pip", "install", "transformers", "--upgrade"])
12 months ago
import_module(self, "bark", "git+https://github.com/suno-ai/bark.git")
# import_module(self, "bark", "git+https://github.com/suno-ai/bark.git")
import_module(self, "diffusers", "diffusers")
# import_module(self, "diffusers", "git+https://github.com/huggingface/diffusers.git@v0.22.3")
import_module(self, "tensorflow", "tensorflow")
# if os_platform == "Darwin" or os_platform == "Linux":
# import_module(self, "sox", "sox")
# else:
12 months ago
import_module(self, "soundfile", "PySoundFile")
# import_module(self, "transformers", "transformers")
import_module(self, "sentencepiece", "sentencepiece")
import_module(self, "safetensors", "safetensors")
import_module(self, "cv2", "opencv_python")
import_module(self, "PIL", "pillow")
import_module(self, "scipy", "scipy")
import_module(self, "IPython", "IPython")
12 months ago
import_module(self, "omegaconf", "omegaconf")
# import_module(self, "mustango", "mustango")
# import_module(self, "mustango", "git+https://github.com/AMAAI-Lab/mustango.git")
# subprocess.check_call([pybin, "-m", "pip", "install", "mediapipe", "--upgrade"])
# try:
# import_module(self, "mediapipe", "git+https://github.com/google/mediapipe.git")
# except ImportError:
# pass
subprocess.check_call(
[
pybin,
"-m",
"pip",
"install",
# "bark",
# "--index-url",
"git+https://github.com/suno-ai/bark.git",
"--no-warn-script-location",
"--user",
]
)
subprocess.check_call(
[
pybin,
"-m",
"pip",
"install",
"xformers==0.0.22.post4",
"--index-url",
"https://download.pytorch.org/whl/cu118",
"--no-warn-script-location",
"--user",
]
)
import_module(self, "imageio", "imageio")
import_module(self, "imwatermark", "invisible-watermark>=0.2.0")
if os_platform == "Windows":
subprocess.check_call(
[
pybin,
"-m",
"pip",
"install",
"libtorrent",
"--no-warn-script-location",
"--user",
#'-t', target,
]
)
subprocess.check_call(
[
pybin,
"-m",
"pip",
"install",
# "triton",
# "--index-url",
"https://huggingface.co/r4ziel/xformers_pre_built/resolve/main/triton-2.0.0-cp310-cp310-win_amd64.whl",
"--no-warn-script-location",
"--user",
#'-t', target,
]
)
else:
import_module(self, "triton", "triton")
# subprocess.check_call(
# [
# pybin,
# #"-m",
# "pip",
# "uninstall",
# "mediapipe",
# #"--no-warn-script-location",
# #"--user",
# #'-t', target,
# ]
# )
# import_module(self, "mediapipe", "mediapipe")
# import_module(self, "audiocraft", "git+https://github.com/facebookresearch/audiocraft.git")
# subprocess.check_call([pybin,"-m","pip","install","force-reinstall","no-deps","pre xformers"])
subprocess.check_call([pybin, "-m", "pip", "install", "numpy", "--upgrade"])
import_module(self, "controlnet_aux", "controlnet_aux")
# import_module(self, "compel", "compel")
# import_module(self, "peft", "git+https://github.com/huggingface/peft.git")
subprocess.check_call([pybin, "-m", "pip", "install", "peft", "--upgrade"])
# import_module(self, "diffusers", "git+https://github.com/huggingface/diffusers.git")
def get_module_dependencies(module_name):
"""
Get the list of dependencies for a given module.
"""
# app_path = site.USER_SITE
# if app_path not in sys.path:
# sys.path.append(app_path)
# pybin = sys.executable
pybin = python_exec()
result = subprocess.run(
[pybin, "-m", "pip", "show", module_name], capture_output=True, text=True
)
output = result.stdout.strip()
dependencies = []
for line in output.split("\n"):
if line.startswith("Requires:"):
dependencies = line.split(":")[1].strip().split(", ")
break
return dependencies
def uninstall_module_with_dependencies(module_name):
"""
Uninstall a module and its dependencies.
"""
show_system_console(True)
set_system_console_topmost(True)
# app_path = site.USER_SITE
# if app_path not in sys.path:
# sys.path.append(app_path)
# pybin = sys.executable
pybin = python_exec()
dependencies = get_module_dependencies(module_name)
# Uninstall the module
subprocess.run([pybin, "-m", "pip", "uninstall", "-y", module_name])
# Uninstall the dependencies
for dependency in dependencies:
subprocess.run([pybin, "-m", "pip", "uninstall", "-y", dependency])
subprocess.check_call([pybin, "-m", "pip", "install", "numpy"])
class GENERATOR_OT_install(Operator):
"""Install all dependencies"""
bl_idname = "sequencer.install_generator"
bl_label = "Install Dependencies"
bl_options = {"REGISTER", "UNDO"}
def execute(self, context):
preferences = context.preferences
addon_prefs = preferences.addons[__name__].preferences
install_modules(self)
self.report(
{"INFO"},
"Installation of dependencies is finished.",
)
return {"FINISHED"}
class GENERATOR_OT_uninstall(Operator):
"""Uninstall all dependencies"""
bl_idname = "sequencer.uninstall_generator"
bl_label = "Uninstall Dependencies"
bl_options = {"REGISTER", "UNDO"}
def execute(self, context):
preferences = context.preferences
addon_prefs = preferences.addons[__name__].preferences
uninstall_module_with_dependencies("torch")
uninstall_module_with_dependencies("torchvision")
uninstall_module_with_dependencies("torchaudio")
# if os_platform == "Darwin" or os_platform == "Linux":
# uninstall_module_with_dependencies("sox")
# else:
12 months ago
uninstall_module_with_dependencies("PySoundFile")
uninstall_module_with_dependencies("diffusers")
uninstall_module_with_dependencies("accelerate")
uninstall_module_with_dependencies("transformers")
uninstall_module_with_dependencies("sentencepiece")
uninstall_module_with_dependencies("safetensors")
uninstall_module_with_dependencies("opencv_python")
uninstall_module_with_dependencies("scipy")
uninstall_module_with_dependencies("IPython")
uninstall_module_with_dependencies("bark")
uninstall_module_with_dependencies("xformers")
uninstall_module_with_dependencies("imageio")
uninstall_module_with_dependencies("invisible-watermark")
uninstall_module_with_dependencies("pillow")
uninstall_module_with_dependencies("libtorrent")
# uninstall_module_with_dependencies("compel")
uninstall_module_with_dependencies("triton")
uninstall_module_with_dependencies("cv2")
# uninstall_module_with_dependencies("mediapipe")
self.report(
{"INFO"},
"\nRemove AI Models manually: \nLinux and macOS: ~/.cache/huggingface/hub\nWindows: %userprofile%.cache\\huggingface\\hub",
)
return {"FINISHED"}
def input_strips_updated(self, context):
preferences = context.preferences
addon_prefs = preferences.addons[__name__].preferences
movie_model_card = addon_prefs.movie_model_card
image_model_card = addon_prefs.image_model_card
scene = context.scene
type = scene.generatorai_typeselect
input = scene.input_strips
if (
movie_model_card == "stabilityai/stable-diffusion-xl-base-1.0"
and type == "movie"
):
scene.input_strips = "input_strips"
if (
type == "movie"
or type == "audio"
or image_model_card == "lllyasviel/control_v11p_sd15_scribble"
):
scene.inpaint_selected_strip = ""
if type == "image" and (
image_model_card == "lllyasviel/sd-controlnet-canny"
or image_model_card == "lllyasviel/sd-controlnet-openpose"
or image_model_card == "lllyasviel/control_v11p_sd15_scribble"
or image_model_card == "monster-labs/control_v1p_sd15_qrcode_monster"
or image_model_card == "Salesforce/blipdiffusion"
):
scene.input_strips = "input_strips"
if context.scene.lora_folder:
bpy.ops.lora.refresh_files()
if type == "text":
scene.input_strips = "input_strips"
12 months ago
if (
type == "movie"
and movie_model_card
== "stabilityai/stable-video-diffusion-img2vid"
) or (
type == "movie"
and movie_model_card
== "stabilityai/stable-video-diffusion-img2vid-xt"
):
scene.input_strips = "input_strips"
def output_strips_updated(self, context):
preferences = context.preferences
addon_prefs = preferences.addons[__name__].preferences
movie_model_card = addon_prefs.movie_model_card
image_model_card = addon_prefs.image_model_card
scene = context.scene
type = scene.generatorai_typeselect
input = scene.input_strips
if (
type == "movie"
or type == "audio"
or image_model_card == "lllyasviel/control_v11p_sd15_scribble"
):
scene.inpaint_selected_strip = ""
if context.scene.lora_folder:
bpy.ops.lora.refresh_files()
if (
image_model_card == "lllyasviel/sd-controlnet-canny"
or image_model_card == "lllyasviel/sd-controlnet-openpose"
or image_model_card == "lllyasviel/control_v11p_sd15_scribble"
or image_model_card == "monster-labs/control_v1p_sd15_qrcode_monster"
or image_model_card == "Salesforce/blipdiffusion"
) and type == "image":
scene.input_strips = "input_strips"
if type == "text":
scene.input_strips = "input_strips"
12 months ago
if (
type == "movie"
and movie_model_card
== "stabilityai/stable-video-diffusion-img2vid"
) or (
type == "movie"
and movie_model_card
== "stabilityai/stable-video-diffusion-img2vid-xt"
):
scene.input_strips = "input_strips"
class GeneratorAddonPreferences(AddonPreferences):
bl_idname = __name__
soundselect: EnumProperty(
name="Sound",
items={
("ding", "Ding", "A simple bell sound"),
("coin", "Coin", "A Mario-like coin sound"),
("user", "User", "Load a custom sound file"),
},
default="ding",
)
default_folder = os.path.join(
os.path.dirname(os.path.abspath(__file__)), "sounds", "*.wav"
)
if default_folder not in sys.path:
sys.path.append(default_folder)
usersound: StringProperty(
name="User",
description="Load a custom sound from your computer",
subtype="FILE_PATH",
default=default_folder,
maxlen=1024,
)
playsound: BoolProperty(
name="Audio Notification",
default=True,
)
movie_model_card: bpy.props.EnumProperty(
name="Video Model",
items=[
(
"stabilityai/stable-video-diffusion-img2vid-xt",
"Stable Video Diffusion XT (576x1024x24) ",
"stabilityai/stable-video-diffusion-img2vid-xt",
),
(
"stabilityai/stable-video-diffusion-img2vid",
"Stable Video Diffusion (576x1024x14)",
"stabilityai/stable-video-diffusion-img2vid",
),
# (
# "stabilityai/stable-diffusion-xl-base-1.0",
# "Img2img SD XL 1.0 Refine (1024x1024)",
# "Stable Diffusion XL 1.0",
12 months ago
# ),
# (
# "stabilityai/sd-turbo",
# "Img2img SD Turbo (512x512)",
# "stabilityai/sd-turbo",
# ),
#("camenduru/potat1", "Potat v1 (1024x576)", "Potat (1024x576)"),
# ("VideoCrafter/Image2Video-512", "VideoCrafter v1 (512x512)", "VideoCrafter/Image2Video-512"),
(
"cerspense/zeroscope_v2_XL",
"Zeroscope XL (1024x576x24)",
"Zeroscope XL (1024x576x24)",
),
(
"cerspense/zeroscope_v2_576w",
"Zeroscope (576x320x24)",
"Zeroscope (576x320x24)",
),
(
"cerspense/zeroscope_v2_dark_30x448x256",
"Zeroscope (448x256x30)",
"Zeroscope (448x256x30)",
),
(
"guoyww/animatediff-motion-adapter-v1-5-2",
"AnimateDiff",
"AnimateDiff",
),
# ("hotshotco/Hotshot-XL", "Hotshot-XL (512x512)", "Hotshot-XL (512x512)"),
("strangeman3107/animov-512x", "Animov (512x512)", "Animov (512x512)"),
("strangeman3107/animov-0.1.1", "Animov (448x384)", "Animov (448x384)"),
],
default="cerspense/zeroscope_v2_576w",
update=input_strips_updated,
)
image_model_card: bpy.props.EnumProperty(
name="Image Model",
items=[
(
"stabilityai/stable-diffusion-xl-base-1.0",
"Stable Diffusion XL 1.0 (1024x1024)",
"stabilityai/stable-diffusion-xl-base-1.0",
),
(
"stabilityai/sdxl-turbo",
"Stable Diffusion XL Turbo (512x512)",
"stabilityai/sdxl-turbo",
),
(
"stabilityai/sd-turbo",
"Stable Diffusion Turbo (512x512)",
"stabilityai/sd-turbo",
),
(
"stabilityai/stable-diffusion-2",
"Stable Diffusion 2 (768x768)",
"stabilityai/stable-diffusion-2",
),
(
"runwayml/stable-diffusion-v1-5",
"Stable Diffusion 1.5 (512x512)",
"runwayml/stable-diffusion-v1-5",
),
(
"segmind/SSD-1B",
"Segmind SSD-1B (1024x1024)",
"segmind/SSD-1B",
),
(
"Lykon/dreamshaper-7",
"Dreamshaper LCM v7 (1024 x 1024)",
"Lykon/dreamshaper-7",
),
# ("ptx0/terminus-xl-gamma-v1", "Terminus XL Gamma v1", "ptx0/terminus-xl-gamma-v1"),
("warp-ai/wuerstchen", "Würstchen (1024x1024)", "warp-ai/wuerstchen"),
12 months ago
("playgroundai/playground-v2-1024px-aesthetic", "Playground v2 (1024x1024)", "playgroundai/playground-v2-1024px-aesthetic"),
(
"Salesforce/blipdiffusion",
"Blip Subject Driven (512x512)",
"Salesforce/blipdiffusion",
),
(
"lllyasviel/sd-controlnet-canny",
"ControlNet (512x512)",
"lllyasviel/sd-controlnet-canny",
),
#("DeepFloyd/IF-I-M-v1.0", "DeepFloyd/IF-I-M-v1.0", "DeepFloyd/IF-I-M-v1.0"),
(
"monster-labs/control_v1p_sd15_qrcode_monster",
"Illusion (512x512)",
"monster-labs/control_v1p_sd15_qrcode_monster",
),
(
"lllyasviel/sd-controlnet-openpose",
"OpenPose (512x512)",
"lllyasviel/sd-controlnet-openpose",
),
(
"lllyasviel/control_v11p_sd15_scribble",
"Scribble (512x512)",
"lllyasviel/control_v11p_sd15_scribble",
),
],
default="stabilityai/stable-diffusion-xl-base-1.0",
update=input_strips_updated,
)
audio_model_card: bpy.props.EnumProperty(
name="Audio Model",
items=[
(
"facebook/musicgen-stereo-small",
"Music: MusicGen Stereo",
"facebook/musicgen-stereo-small",
),
("bark", "Speech: Bark", "Bark"),
(
"cvssp/audioldm2-music",
"Music: AudioLDM 2",
"Music: AudioLDM 2",
),
(
"cvssp/audioldm2",
"Sound: AudioLDM 2",
"Sound: AudioLDM 2",
),
# ("declare-lab/mustango", "Mustango", "declare-lab/mustango"),
],
default="facebook/musicgen-stereo-small",
update=input_strips_updated,
)
hugginface_token: bpy.props.StringProperty(
name="Hugginface Token",
default="hugginface_token",
subtype="PASSWORD",
)
text_model_card: EnumProperty(
name="Text Model",
items={
(
"Salesforce/blip-image-captioning-large",
"Image Captioning",
"Salesforce/blip-image-captioning-large",
),
},
default="Salesforce/blip-image-captioning-large",
)
generator_ai: StringProperty(
name="Filepath",
description="Path to the folder where the generated files are stored",
subtype="DIR_PATH",
default=join(bpy.utils.user_resource("DATAFILES"), "Generator AI"),
)
use_strip_data: BoolProperty(
name="Use Input Strip Data",
default=True,
)
def draw(self, context):
layout = self.layout
box = layout.box()
row = box.row()
row.operator("sequencer.install_generator")
row.operator("sequencer.uninstall_generator")
box.prop(self, "movie_model_card")
box.prop(self, "image_model_card")
if self.image_model_card == "DeepFloyd/IF-I-M-v1.0":
row = box.row(align=True)
row.prop(self, "hugginface_token")
row.operator(
"wm.url_open", text="", icon="URL"
).url = "https://huggingface.co/settings/tokens"
box.prop(self, "audio_model_card")
box.prop(self, "generator_ai")
row = box.row(align=True)
row.label(text="Notification:")
row.prop(self, "playsound", text="")
sub_row = row.row()
sub_row.prop(self, "soundselect", text="")
if self.soundselect == "user":
sub_row.prop(self, "usersound", text="")
sub_row.operator("renderreminder.play_notification", text="", icon="PLAY")
sub_row.active = self.playsound
row_row = box.row(align=True)
row_row.label(text="Use Input Strip Data:")
row_row.prop(self, "use_strip_data", text="")
row_row.label(text="")
row_row.label(text="")
row_row.label(text="")
class GENERATOR_OT_sound_notification(Operator):
"""Test your notification settings"""
bl_idname = "renderreminder.play_notification"
bl_label = "Test Notification"
bl_options = {"REGISTER", "UNDO"}
def execute(self, context):
preferences = context.preferences
addon_prefs = preferences.addons[__name__].preferences
if addon_prefs.playsound:
device = aud.Device()
def coinSound():
sound = aud.Sound("")
handle = device.play(
sound.triangle(1000)
.highpass(20)
.lowpass(2000)
.ADSR(0, 0.5, 1, 0)
.fadeout(0.1, 0.1)
.limit(0, 1)
)
handle = device.play(
sound.triangle(1500)
.highpass(20)
.lowpass(2000)
.ADSR(0, 0.5, 1, 0)
.fadeout(0.2, 0.2)
.delay(0.1)
.limit(0, 1)
)
def ding():
sound = aud.Sound("")
handle = device.play(
sound.triangle(3000)
.highpass(20)
.lowpass(1000)
.ADSR(0, 0.5, 1, 0)
.fadeout(0, 1)
.limit(0, 1)
)
if addon_prefs.soundselect == "ding":
ding()
if addon_prefs.soundselect == "coin":
coinSound()
if addon_prefs.soundselect == "user":
file = str(addon_prefs.usersound)
if os.path.isfile(file):
sound = aud.Sound(file)
handle = device.play(sound)
return {"FINISHED"}
def get_render_strip(self, context, strip):
"""Render selected strip to hard disk"""
# Check for the context and selected strips
if not context or not context.scene or not context.scene.sequence_editor:
self.report({"ERROR"}, "No valid context or selected strips")
return {"CANCELLED"}
bpy.context.preferences.system.sequencer_proxy_setup = "MANUAL"
current_scene = context.scene
sequencer = current_scene.sequence_editor
current_frame_old = bpy.context.scene.frame_current
selected_sequences = strip
# Get the first empty channel above all strips
insert_channel_total = 1
for s in sequencer.sequences_all:
if s.channel >= insert_channel_total:
insert_channel_total = s.channel + 1
if strip.type in {
"MOVIE",
"IMAGE",
"SOUND",
"SCENE",
"TEXT",
"COLOR",
"META",
"MASK",
}:
# Deselect all strips in the current scene
for s in sequencer.sequences_all:
s.select = False
# Select the current strip in the current scene
strip.select = True
# Store current frame for later
bpy.context.scene.frame_current = int(strip.frame_start)
# Copy the strip to the clipboard
bpy.ops.sequencer.copy()
# Create a new scene
# new_scene = bpy.data.scenes.new(name="New Scene")
# Create a new scene
new_scene = bpy.ops.scene.new(type="EMPTY")
# Get the newly created scene
new_scene = bpy.context.scene
# Add a sequencer to the new scene
new_scene.sequence_editor_create()
# Set the new scene as the active scene
context.window.scene = new_scene
# Copy the scene properties from the current scene to the new scene
new_scene.render.resolution_x = current_scene.render.resolution_x
new_scene.render.resolution_y = current_scene.render.resolution_y
new_scene.render.resolution_percentage = (
current_scene.render.resolution_percentage
)
new_scene.render.pixel_aspect_x = current_scene.render.pixel_aspect_x
new_scene.render.pixel_aspect_y = current_scene.render.pixel_aspect_y
new_scene.render.fps = current_scene.render.fps
new_scene.render.fps_base = current_scene.render.fps_base
new_scene.render.sequencer_gl_preview = (
current_scene.render.sequencer_gl_preview
)
new_scene.render.use_sequencer_override_scene_strip = (
current_scene.render.use_sequencer_override_scene_strip
)
new_scene.world = current_scene.world
area = [
area for area in context.screen.areas if area.type == "SEQUENCE_EDITOR"
][0]
with bpy.context.temp_override(area=area):
# Paste the strip from the clipboard to the new scene
bpy.ops.sequencer.paste()
# Get the new strip in the new scene
new_strip = (
new_scene.sequence_editor.active_strip
) = bpy.context.selected_sequences[0]
# Set the range in the new scene to fit the pasted strip
new_scene.frame_start = int(new_strip.frame_final_start)
new_scene.frame_end = (
int(new_strip.frame_final_start + new_strip.frame_final_duration) - 1
)
# Set the render settings for rendering animation with FFmpeg and MP4 with sound
bpy.context.scene.render.image_settings.file_format = "FFMPEG"
bpy.context.scene.render.ffmpeg.format = "MPEG4"
bpy.context.scene.render.ffmpeg.audio_codec = "AAC"
# Make dir
preferences = bpy.context.preferences
addon_prefs = preferences.addons[__name__].preferences
rendered_dir = os.path.join(addon_prefs.generator_ai, str(date.today()))
rendered_dir = os.path.join(rendered_dir, "Rendered_Strips")
# Set the name of the file
src_name = strip.name
src_dir = ""
src_ext = ".mp4"
# Create a new folder for the rendered files
if not os.path.exists(rendered_dir):
os.makedirs(rendered_dir)
# Set the output path for the rendering
output_path = os.path.join(rendered_dir, src_name + "_rendered" + src_ext)
output_path = ensure_unique_filename(output_path)
new_scene.render.filepath = output_path
# Render the strip to hard disk
bpy.ops.render.opengl(animation=True, sequencer=True)
# Delete the new scene
bpy.data.scenes.remove(new_scene, do_unlink=True)
if not os.path.exists(output_path):
1 year ago
print("Render failed: " + output_path)
bpy.context.preferences.system.sequencer_proxy_setup = "AUTOMATIC"
return {"CANCELLED"}
# Set the original scene as the active scene
context.window.scene = current_scene
# Reset to total top channel
insert_channel = insert_channel_total
area = [
area for area in context.screen.areas if area.type == "SEQUENCE_EDITOR"
][0]
with bpy.context.temp_override(area=area):
insert_channel = find_first_empty_channel(
strip.frame_final_start,
strip.frame_final_start + strip.frame_final_duration,
)
if strip.type == "SOUND":
# Insert the rendered file as a sound strip in the original scene without video.
bpy.ops.sequencer.sound_strip_add(
channel=insert_channel,
filepath=output_path,
frame_start=int(strip.frame_final_start),
overlap=0,
)
elif strip.type == "SCENE":
# Insert the rendered file as a scene strip in the original scene.
bpy.ops.sequencer.movie_strip_add(
channel=insert_channel,
filepath=output_path,
frame_start=int(strip.frame_final_start),
overlap=0,
sound=False,
)
# elif strip.type == "IMAGE":
# # Insert the rendered file as an image strip in the original scene.
# bpy.ops.sequencer.image_strip_add(
# channel=insert_channel,
# filepath=output_path,
# frame_start=int(strip.frame_final_start),
# overlap=0,
# sound=False,
# )
else:
# Insert the rendered file as a movie strip in the original scene without sound.
bpy.ops.sequencer.movie_strip_add(
channel=insert_channel,
filepath=output_path,
frame_start=int(strip.frame_final_start),
overlap=0,
sound=False,
)
resulting_strip = sequencer.active_strip
resulting_strip.use_proxy = False
# Reset current frame
bpy.context.scene.frame_current = current_frame_old
bpy.context.preferences.system.sequencer_proxy_setup = "AUTOMATIC"
return resulting_strip
def find_strip_by_name(scene, name):
for sequence in scene.sequence_editor.sequences:
if sequence.name == name:
return sequence
return None
def get_strip_path(strip):
if strip.type == "IMAGE":
strip_dirname = os.path.dirname(strip.directory)
image_path = bpy.path.abspath(
os.path.join(strip_dirname, strip.elements[0].filename)
)
return image_path
if strip.type == "MOVIE":
movie_path = bpy.path.abspath(strip.filepath)
return movie_path
return None
def clamp_value(value, min_value, max_value):
# Ensure value is within the specified range
return max(min(value, max_value), min_value)
def find_overlapping_frame(strip, current_frame):
# Calculate the end frame of the strip
strip_end_frame = strip.frame_final_start + strip.frame_duration
# Check if the strip's frame range overlaps with the current frame
if strip.frame_final_start <= current_frame <= strip_end_frame:
# Calculate the overlapped frame by subtracting strip.frame_start from the current frame
return current_frame - strip.frame_start
else:
return None # Return None if there is no overlap
def ensure_unique_filename(file_name):
# Check if the file already exists
if os.path.exists(file_name):
base_name, extension = os.path.splitext(file_name)
index = 1
# Keep incrementing the index until a unique filename is found
while True:
unique_file_name = f"{base_name}_{index}{extension}"
if not os.path.exists(unique_file_name):
return unique_file_name
index += 1
else:
# File doesn't exist, return the original name
return file_name
# LoRA.
class LORABrowserFileItem(PropertyGroup):
name: bpy.props.StringProperty()
enabled: bpy.props.BoolProperty(default=True)
weight_value: bpy.props.FloatProperty(default=1.0)
index: bpy.props.IntProperty(name="Index", default=0)
class LORABROWSER_UL_files(UIList):
1 year ago
def draw_item(
self, context, layout, data, item, icon, active_data, active_propname, index
):
row = layout.row(align=True)
row.prop(item, "enabled", text="")
split = row.split(factor=0.7)
split.label(text=item.name)
split.prop(item, "weight_value", text="", emboss=False)
def update_folder_callback(self, context):
if context.scene.lora_folder:
bpy.ops.lora.refresh_files()
class LORA_OT_RefreshFiles(Operator):
bl_idname = "lora.refresh_files"
bl_label = "Refresh Files"
def execute(self, context):
scene = context.scene
directory = bpy.path.abspath(scene.lora_folder)
if not directory:
1 year ago
self.report({"ERROR"}, "No folder selected")
return {"CANCELLED"}
lora_files = scene.lora_files
lora_files.clear()
for filename in os.listdir(directory):
if filename.endswith(".safetensors"):
file_item = lora_files.add()
file_item.name = filename.replace(".safetensors", "")
file_item.enabled = False
file_item.weight_value = 1.0
1 year ago
return {"FINISHED"}
class SEQUENCER_PT_pallaidium_panel(Panel): # UI
"""Generate Media using AI"""
bl_idname = "SEQUENCER_PT_sequencer_generate_movie_panel"
bl_label = "Generative AI"
bl_space_type = "SEQUENCE_EDITOR"
bl_region_type = "UI"
bl_category = "Generative AI"
@classmethod
def poll(cls, context):
return context.area.type == "SEQUENCE_EDITOR"
def draw(self, context):
preferences = context.preferences
addon_prefs = preferences.addons[__name__].preferences
audio_model_card = addon_prefs.audio_model_card
movie_model_card = addon_prefs.movie_model_card
image_model_card = addon_prefs.image_model_card
scene = context.scene
type = scene.generatorai_typeselect
input = scene.input_strips
layout = self.layout
col = layout.column(align=False)
col.use_property_split = True
col.use_property_decorate = False
col = col.box()
col = col.column()
# Input
if image_model_card == "Salesforce/blipdiffusion" and type == "image":
col.prop(context.scene, "input_strips", text="Source Image")
col.prop(context.scene, "blip_cond_subject", text="Source Subject")
# col.prop(context.scene, "blip_subject_image", text="Target Image")
col.prop_search(
scene,
"blip_subject_image",
scene.sequence_editor,
"sequences",
text="Target Image",
icon="SEQ_STRIP_DUPLICATE",
)
col.prop(context.scene, "blip_tgt_subject", text="Target Subject")
else:
col.prop(context.scene, "input_strips", text="Input")
if type != "text":
if type != "audio":
if (
type == "movie"
and movie_model_card != "guoyww/animatediff-motion-adapter-v1-5-2"
) or (
type == "image"
and image_model_card != "lllyasviel/sd-controlnet-canny"
and image_model_card != "lllyasviel/sd-controlnet-openpose"
and image_model_card != "lllyasviel/control_v11p_sd15_scribble"
and image_model_card
!= "monster-labs/control_v1p_sd15_qrcode_monster"
and image_model_card != "Salesforce/blipdiffusion"
):
if input == "input_strips" and not scene.inpaint_selected_strip:
col = col.column(heading="Use", align=True)
col.prop(addon_prefs, "use_strip_data", text=" Name & Seed")
col.prop(context.scene, "image_power", text="Strip Power")
if (
type == "movie"
and movie_model_card
== "stabilityai/stable-video-diffusion-img2vid"
) or (
type == "movie"
and movie_model_card
== "stabilityai/stable-video-diffusion-img2vid-xt"
):
col.prop(
context.scene, "svd_motion_bucket_id", text="Motion"
)
col.prop(
context.scene,
"svd_decode_chunk_size",
text="Decode Frames",
)
if bpy.context.scene.sequence_editor is not None:
if len(bpy.context.scene.sequence_editor.sequences) > 0:
if input == "input_strips" and type == "image":
col.prop_search(
scene,
"inpaint_selected_strip",
scene.sequence_editor,
"sequences",
text="Inpaint Mask",
icon="SEQ_STRIP_DUPLICATE",
)
if (
image_model_card == "lllyasviel/sd-controlnet-openpose"
and type == "image"
):
col = col.column(heading="Read as", align=True)
col.prop(context.scene, "openpose_use_bones", text="OpenPose Rig Image")
if (
image_model_card == "lllyasviel/control_v11p_sd15_scribble"
and type == "image"
):
col = col.column(heading="Read as", align=True)
col.prop(context.scene, "use_scribble_image", text="Scribble Image")
# LoRA.
if (
(
image_model_card == "stabilityai/stable-diffusion-xl-base-1.0"
or image_model_card == "runwayml/stable-diffusion-v1-5"
or image_model_card == "stabilityai/sdxl-turbo"
)
and type == "image"
and input != "input_strips"
):
col = layout.column(align=True)
col = col.box()
col = col.column(align=True)
col.use_property_split = False
col.use_property_decorate = False
# Folder selection and refresh button
row = col.row(align=True)
row.prop(scene, "lora_folder", text="LoRA")
row.operator("lora.refresh_files", text="", icon="FILE_REFRESH")
# Custom UIList
lora_files = scene.lora_files
list_len = len(lora_files)
if list_len > 0:
col.template_list(
"LORABROWSER_UL_files",
"The_List",
scene,
"lora_files",
scene,
"lora_files_index",
rows=2,
)
# Prompts
col = layout.column(align=True)
col = col.box()
col = col.column(align=True)
col.use_property_split = True
col.use_property_decorate = False
if (
type == "movie"
and movie_model_card == "stabilityai/stable-video-diffusion-img2vid"
) or (
type == "movie"
and movie_model_card == "stabilityai/stable-video-diffusion-img2vid-xt"
):
pass
else:
col.use_property_split = False
col.use_property_decorate = False
col.prop(context.scene, "generate_movie_prompt", text="", icon="ADD")
if (type == "audio" and audio_model_card == "bark") or (
type == "audio"
and audio_model_card == "facebook/musicgen-stereo-small"
):
pass
else:
col.prop(
context.scene,
"generate_movie_negative_prompt",
text="",
icon="REMOVE",
)
layout = col.column()
col = layout.column(align=True)
col.use_property_split = True
col.use_property_decorate = False
if type != "audio":
col.prop(context.scene, "generatorai_styles", text="Style")
layout = col.column()
if type == "movie" or type == "image":
col = layout.column(align=True)
col.prop(context.scene, "generate_movie_x", text="X")
col.prop(context.scene, "generate_movie_y", text="Y")
col = layout.column(align=True)
if type == "movie" or type == "image":
col.prop(context.scene, "generate_movie_frames", text="Frames")
if type == "audio" and audio_model_card != "bark":
col.prop(context.scene, "audio_length_in_f", text="Frames")
if type == "audio" and audio_model_card == "bark":
col = layout.column(align=True)
col.prop(context.scene, "speakers", text="Speaker")
col.prop(context.scene, "languages", text="Language")
elif (
type == "audio"
and addon_prefs.audio_model_card == "facebook/musicgen-stereo-small"
):
col.prop(
context.scene, "movie_num_inference_steps", text="Quality Steps"
)
else:
col.prop(
context.scene, "movie_num_inference_steps", text="Quality Steps"
)
if (
(
type == "movie"
and movie_model_card
== "stabilityai/stable-video-diffusion-img2vid"
)
or (
type == "movie"
and movie_model_card
== "stabilityai/stable-video-diffusion-img2vid-xt"
)
):
pass
else:
col.prop(context.scene, "movie_num_guidance", text="Word Power")
col = col.column()
row = col.row(align=True)
sub_row = row.row(align=True)
sub_row.prop(context.scene, "movie_num_seed", text="Seed")
row.prop(context.scene, "movie_use_random", text="", icon="QUESTION")
sub_row.active = not context.scene.movie_use_random
if type == "movie" and (
movie_model_card == "cerspense/zeroscope_v2_dark_30x448x256"
or movie_model_card == "cerspense/zeroscope_v2_576w"
or movie_model_card == "cerspense/zeroscope_v2_XL"
):
col = col.column(heading="Upscale", align=True)
col.prop(context.scene, "video_to_video", text="2x")
if type == "image":
col = col.column(heading="Enhance", align=True)
col.prop(context.scene, "refine_sd", text="SD Refine")
sub_col = col.row()
sub_col.active = context.scene.refine_sd
if type != "audio":
row = col.row()
if type == "movie" or (
type == "image"
and image_model_card != "lllyasviel/sd-controlnet-canny"
and image_model_card != "lllyasviel/sd-controlnet-openpose"
and image_model_card != "lllyasviel/control_v11p_sd15_scribble"
and image_model_card
!= "monster-labs/control_v1p_sd15_qrcode_monster"
and image_model_card != "Salesforce/blipdiffusion"
):
row.prop(context.scene, "use_freeU", text="FreeU")
if type == "image":
if (
(
type == "image"
and image_model_card
== "stabilityai/stable-diffusion-xl-base-1.0"
)
or (type == "image" and image_model_card == "segmind/SSD-1B")
or (
type == "image"
and image_model_card == "runwayml/stable-diffusion-v1-5"
)
):
row.prop(context.scene, "use_lcm", text="LCM")
# Output.
layout = self.layout
layout.use_property_split = True
layout.use_property_decorate = False
col = layout.box()
col = col.column(align=True)
col.prop(context.scene, "generatorai_typeselect", text="Output")
1 year ago
if type == "image":
col.prop(addon_prefs, "image_model_card", text=" ")
if addon_prefs.image_model_card == "DeepFloyd/IF-I-M-v1.0":
row = col.row(align=True)
row.prop(addon_prefs, "hugginface_token")
row.operator(
"wm.url_open", text="", icon="URL"
).url = "https://huggingface.co/settings/tokens"
if type == "movie":
col.prop(addon_prefs, "movie_model_card", text=" ")
if type == "audio":
col.prop(addon_prefs, "audio_model_card", text=" ")
if type == "text":
col.prop(addon_prefs, "text_model_card", text=" ")
if type != "text":
col = col.column()
col.prop(context.scene, "movie_num_batch", text="Batch Count")
# Generate.
col = layout.column()
col = col.box()
if input == "input_strips":
ed = scene.sequence_editor
row = col.row(align=True)
row.scale_y = 1.2
row.operator("sequencer.text_to_generator", text="Generate from Strips")
else:
row = col.row(align=True)
row.scale_y = 1.2
if type == "movie":
# if movie_model_card == "stabilityai/stable-diffusion-xl-base-1.0":
# row.operator(
# "sequencer.text_to_generator", text="Generate from Strips"
# )
# else:
12 months ago
if movie_model_card == "stabilityai/sd-turbo":
row.operator(
"sequencer.text_to_generator", text="Generate from Strips"
)
else:
row.operator("sequencer.generate_movie", text="Generate")
if type == "image":
row.operator("sequencer.generate_image", text="Generate")
if type == "audio":
row.operator("sequencer.generate_audio", text="Generate")
class NoWatermark:
def apply_watermark(self, img):
return img
class SEQUENCER_OT_generate_movie(Operator):
"""Generate Video"""
bl_idname = "sequencer.generate_movie"
bl_label = "Prompt"
bl_description = "Convert text to video"
bl_options = {"REGISTER", "UNDO"}
def execute(self, context):
scene = context.scene
if not scene.generate_movie_prompt:
self.report({"INFO"}, "Text prompt in the Generative AI tab is empty!")
return {"CANCELLED"}
try:
import torch
from diffusers.utils import export_to_video
from PIL import Image
Image.MAX_IMAGE_PIXELS = None
import numpy as np
from .free_lunch_utils import (
register_free_upblock3d,
register_free_crossattn_upblock3d,
)
# from compel import Compel
except ModuleNotFoundError:
print("In the add-on preferences, install dependencies.")
self.report(
{"INFO"},
"In the add-on preferences, install dependencies.",
)
return {"CANCELLED"}
show_system_console(True)
set_system_console_topmost(True)
seq_editor = scene.sequence_editor
if not seq_editor:
scene.sequence_editor_create()
# clear the VRAM
if torch.cuda.is_available():
torch.cuda.empty_cache()
current_frame = scene.frame_current
prompt = style_prompt(scene.generate_movie_prompt)[0]
negative_prompt = (
scene.generate_movie_negative_prompt
+ ", "
+ style_prompt(scene.generate_movie_prompt)[1]
+ ", nsfw, nude, nudity"
)
movie_x = scene.generate_movie_x
movie_y = scene.generate_movie_y
x = scene.generate_movie_x = closest_divisible_32(movie_x)
y = scene.generate_movie_y = closest_divisible_32(movie_y)
duration = scene.generate_movie_frames
movie_num_inference_steps = scene.movie_num_inference_steps
movie_num_guidance = scene.movie_num_guidance
input = scene.input_strips
preferences = context.preferences
addon_prefs = preferences.addons[__name__].preferences
movie_model_card = addon_prefs.movie_model_card
image_model_card = addon_prefs.image_model_card
pipe = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
# LOADING MODELS
print("Model: " + movie_model_card)
# Models for refine imported image or movie
if (
(scene.movie_path or scene.image_path)
and input == "input_strips"
and movie_model_card != "guoyww/animatediff-motion-adapter-v1-5-2"
):
12 months ago
if (
movie_model_card == "stabilityai/sd-turbo"
): # img2img
# from diffusers import StableDiffusionXLImg2ImgPipeline, AutoencoderKL
# vae = AutoencoderKL.from_pretrained(
# "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
# )
from diffusers import AutoPipelineForImage2Image
#from diffusers.utils import load_image
pipe = AutoPipelineForImage2Image.from_pretrained("stabilityai/sd-turbo", torch_dtype=torch.float16, variant="fp16")
#pipe.to("cuda")
#init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png").resize((512, 512))
#prompt = "cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney, 8k"
#image = pipe(prompt, image=init_image, num_inference_steps=2, strength=0.5, guidance_scale=0.0).images[0]
# pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
# movie_model_card,
# torch_dtype=torch.float16,
# variant="fp16",
# vae=vae,
# )
# from diffusers import DPMSolverMultistepScheduler
# pipe.scheduler = DPMSolverMultistepScheduler.from_config(
# pipe.scheduler.config
# )
# pipe.watermark = NoWatermark()
if low_vram():
pipe.enable_model_cpu_offload()
# pipe.unet.enable_forward_chunking(chunk_size=1, dim=1) # Heavy
# pipe.enable_vae_slicing()
else:
pipe.to(gfx_device)
# from diffusers import StableDiffusionXLImg2ImgPipeline
# refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
# "stabilityai/stable-diffusion-xl-refiner-1.0",
# text_encoder_2=pipe.text_encoder_2,
# vae=pipe.vae,
# torch_dtype=torch.float16,
# variant="fp16",
# )
# if low_vram():
# refiner.enable_model_cpu_offload()
# # refiner.enable_vae_tiling()
# # refiner.enable_vae_slicing()
# else:
# refiner.to(gfx_device)
# if (
# movie_model_card == "stabilityai/stable-diffusion-xl-base-1.0"
# ): # img2img
# from diffusers import StableDiffusionXLImg2ImgPipeline, AutoencoderKL
# vae = AutoencoderKL.from_pretrained(
# "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
# )
# pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
# movie_model_card,
# torch_dtype=torch.float16,
# variant="fp16",
# vae=vae,
# )
# from diffusers import DPMSolverMultistepScheduler
# pipe.scheduler = DPMSolverMultistepScheduler.from_config(
# pipe.scheduler.config
# )
# pipe.watermark = NoWatermark()
# if low_vram():
# pipe.enable_model_cpu_offload()
# # pipe.unet.enable_forward_chunking(chunk_size=1, dim=1) # Heavy
# # pipe.enable_vae_slicing()
# else:
# pipe.to(gfx_device)
# from diffusers import StableDiffusionXLImg2ImgPipeline
# refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
# "stabilityai/stable-diffusion-xl-refiner-1.0",
# text_encoder_2=pipe.text_encoder_2,
# vae=pipe.vae,
# torch_dtype=torch.float16,
# variant="fp16",
# )
# if low_vram():
# refiner.enable_model_cpu_offload()
# # refiner.enable_vae_tiling()
# # refiner.enable_vae_slicing()
# else:
# refiner.to(gfx_device)
12 months ago
elif (
movie_model_card == "stabilityai/stable-video-diffusion-img2vid"
or movie_model_card == "stabilityai/stable-video-diffusion-img2vid-xt"
):
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
refiner = StableVideoDiffusionPipeline.from_pretrained(
movie_model_card, torch_dtype=torch.float16, variant="fp16"
)
if low_vram():
refiner.enable_model_cpu_offload()
else:
refiner.to(gfx_device)
else: # vid2vid / img2vid
if (
movie_model_card == "cerspense/zeroscope_v2_dark_30x448x256"
or movie_model_card == "cerspense/zeroscope_v2_576w"
or scene.image_path
):
card = "cerspense/zeroscope_v2_XL"
else:
card = movie_model_card
from diffusers import VideoToVideoSDPipeline
upscale = VideoToVideoSDPipeline.from_pretrained(
card,
torch_dtype=torch.float16,
# variant="fp16",
# use_safetensors=True,
)
from diffusers import DPMSolverMultistepScheduler
upscale.scheduler = DPMSolverMultistepScheduler.from_config(
upscale.scheduler.config
)
if low_vram():
# torch.cuda.set_per_process_memory_fraction(0.98)
upscale.enable_model_cpu_offload()
# upscale.enable_vae_tiling()
1 year ago
# upscale.enable_vae_slicing()
12 months ago
#upscale.unet.enable_forward_chunking(chunk_size=1, dim=1) # heavy:
else:
upscale.to(gfx_device)
# Models for movie generation
else:
if movie_model_card == "guoyww/animatediff-motion-adapter-v1-5-2":
from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
from diffusers.utils import export_to_gif
# Load the motion adapter
adapter = MotionAdapter.from_pretrained(
"guoyww/animatediff-motion-adapter-v1-5-2"
)
# load SD 1.5 based finetuned model
# model_id = "runwayml/stable-diffusion-v1-5"
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffPipeline.from_pretrained(
model_id, motion_adapter=adapter, torch_dtype=torch.float16
)
scheduler = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
steps_offset=1,
)
pipe.scheduler = scheduler
if low_vram():
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
# pipe.unet.enable_forward_chunking(chunk_size=1, dim=1) # heavy:
else:
upscale.to(gfx_device)
elif movie_model_card == "VideoCrafter/Image2Video-512":
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_single_file(
"https://huggingface.co/VideoCrafter/Image2Video-512/blob/main/model.ckpt",
torch_dtype=torch.float16,
)
from diffusers import DPMSolverMultistepScheduler
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
pipe.scheduler.config
)
if low_vram():
pipe.enable_model_cpu_offload()
# pipe.enable_vae_slicing()
else:
pipe.to(gfx_device)
elif (
movie_model_card == "stabilityai/stable-video-diffusion-img2vid"
or movie_model_card == "stabilityai/stable-video-diffusion-img2vid-xt"
):
print("Stable Video Diffusion needs image input")
return {"CANCELLED"}
else:
from diffusers import TextToVideoSDPipeline
12 months ago
import torch
pipe = TextToVideoSDPipeline.from_pretrained(
movie_model_card,
torch_dtype=torch.float16,
use_safetensors=False,
)
from diffusers import DPMSolverMultistepScheduler
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
pipe.scheduler.config
)
if low_vram():
pipe.enable_model_cpu_offload()
# pipe.enable_vae_slicing()
else:
pipe.to(gfx_device)
# Model for upscale generated movie
if scene.video_to_video:
if torch.cuda.is_available():
torch.cuda.empty_cache()
from diffusers import DiffusionPipeline
upscale = DiffusionPipeline.from_pretrained(
"cerspense/zeroscope_v2_XL",
torch_dtype=torch.float16,
use_safetensors=False,
)
upscale.scheduler = DPMSolverMultistepScheduler.from_config(
upscale.scheduler.config
)
if low_vram():
upscale.enable_model_cpu_offload()
12 months ago
#upscale.unet.enable_forward_chunking(chunk_size=1, dim=1) # Heavy
1 year ago
# upscale.enable_vae_slicing()
else:
upscale.to(gfx_device)
if scene.use_freeU and pipe: # Free Lunch
# -------- freeu block registration
print("Process: FreeU")
1 year ago
register_free_upblock3d(pipe) # , b1=1.1, b2=1.2, s1=0.6, s2=0.4)
register_free_crossattn_upblock3d(pipe) # , b1=1.1, b2=1.2, s1=0.6, s2=0.4)
# -------- freeu block registration
# GENERATING - Main Loop
for i in range(scene.movie_num_batch):
if torch.cuda.is_available():
torch.cuda.empty_cache()
if i > 0:
empty_channel = scene.sequence_editor.active_strip.channel
start_frame = (
scene.sequence_editor.active_strip.frame_final_start
+ scene.sequence_editor.active_strip.frame_final_duration
)
scene.frame_current = (
scene.sequence_editor.active_strip.frame_final_start
)
else:
empty_channel = find_first_empty_channel(
scene.frame_current,
(scene.movie_num_batch * duration) + scene.frame_current,
)
start_frame = scene.frame_current
# Get seed
seed = context.scene.movie_num_seed
seed = (
seed
if not context.scene.movie_use_random
else random.randint(-2147483647, 2147483647)
)
print("Seed: " + str(seed))
context.scene.movie_num_seed = seed
# Use cuda if possible
if (
torch.cuda.is_available()
and movie_model_card != "stabilityai/stable-video-diffusion-img2vid"
and movie_model_card != "stabilityai/stable-video-diffusion-img2vid-xt"
):
generator = (
torch.Generator("cuda").manual_seed(seed) if seed != 0 else None
)
else:
if seed != 0:
generator = torch.Generator()
generator.manual_seed(seed)
else:
generator = None
# Process batch input
if (
(scene.movie_path or scene.image_path)
and input == "input_strips"
and movie_model_card != "guoyww/animatediff-motion-adapter-v1-5-2"
):
video_path = scene.movie_path
# # img2img
# if movie_model_card == "stabilityai/stable-diffusion-xl-base-1.0":
# print("Process: Frame by frame (SD XL)")
# input_video_path = video_path
# output_video_path = solve_path("temp_images")
# if scene.movie_path:
# frames = process_video(input_video_path, output_video_path)
# elif scene.image_path:
# frames = process_image(
# scene.image_path, int(scene.generate_movie_frames)
# )
# video_frames = []
# # Iterate through the frames
# for frame_idx, frame in enumerate(
# frames
# ): # would love to get this flicker free
# print(str(frame_idx + 1) + "/" + str(len(frames)))
# image = refiner(
# prompt,
# negative_prompt=negative_prompt,
# num_inference_steps=movie_num_inference_steps,
# strength=1.00 - scene.image_power,
# guidance_scale=movie_num_guidance,
# image=frame,
# generator=generator,
# ).images[0]
# video_frames.append(image)
# if torch.cuda.is_available():
# torch.cuda.empty_cache()
# video_frames = np.array(video_frames)
12 months ago
# img2img
if movie_model_card == "stabilityai/sd-turbo":
print("Process: Frame by frame (SD Turbo)")
input_video_path = video_path
output_video_path = solve_path("temp_images")
if scene.movie_path:
frames = process_video(input_video_path, output_video_path)
elif scene.image_path:
frames = process_image(
scene.image_path, int(scene.generate_movie_frames)
)
video_frames = []
# Iterate through the frames
for frame_idx, frame in enumerate(frames): # would love to get this flicker free
print(str(frame_idx + 1) + "/" + str(len(frames)))
image = pipe(
prompt,
negative_prompt=negative_prompt,
num_inference_steps=2, #movie_num_inference_steps,
strength=0.5,#scene.image_power,
guidance_scale=3.0,
image=frame,
generator=generator,
).images[0]
video_frames.append(image)
if torch.cuda.is_available():
torch.cuda.empty_cache()
video_frames = np.array(video_frames)
# vid2vid / img2vid
12 months ago
elif (
movie_model_card == "stabilityai/stable-video-diffusion-img2vid"
or movie_model_card
== "stabilityai/stable-video-diffusion-img2vid-xt"
):
if scene.movie_path:
print("Only image strip as input supported!")
return {"CANCELLED"}
elif scene.image_path:
print("Process: Image to SVD Video")
if not os.path.isfile(scene.image_path):
print("No file found.")
return {"CANCELLED"}
image = load_image(bpy.path.abspath(scene.image_path))
image = image.resize(
(closest_divisible_32(int(x)), closest_divisible_32(int(y)))
)
video_frames = refiner(
image,
noise_aug_strength=1.00 - scene.image_power,
decode_chunk_size=scene.svd_decode_chunk_size,
motion_bucket_id=scene.svd_motion_bucket_id,
num_inference_steps=movie_num_inference_steps,
height=y,
width=x,
num_frames=duration,
generator=generator,
).frames[0]
export_to_video(
video_frames, "C:/Users/45239/Documents/generated2.mp4", fps=7
)
elif movie_model_card != "guoyww/animatediff-motion-adapter-v1-5-2":
if scene.movie_path:
print("Process: Video to video")
if not os.path.isfile(scene.movie_path):
print("No file found.")
return {"CANCELLED"}
video = load_video_as_np_array(video_path)
elif scene.image_path:
print("Process: Image to video")
if not os.path.isfile(scene.image_path):
print("No file found.")
return {"CANCELLED"}
video = process_image(
scene.image_path, int(scene.generate_movie_frames)
)
video = np.array(video)
if not video.any():
print("Loading of file failed")
return {"CANCELLED"}
# Upscale video
if scene.video_to_video:
video = [
Image.fromarray(frame).resize(
(
closest_divisible_32(int(x * 2)),
closest_divisible_32(int(y * 2)),
)
)
for frame in video
]
else:
video = [
Image.fromarray(frame).resize(
(
closest_divisible_32(int(x)),
closest_divisible_32(int(y)),
)
)
for frame in video
]
video_frames = upscale(
prompt,
video=video,
strength=1.00 - scene.image_power,
negative_prompt=negative_prompt,
num_inference_steps=movie_num_inference_steps,
guidance_scale=movie_num_guidance,
generator=generator,
).frames
# Movie.
else:
print("Generate: Video")
if movie_model_card == "guoyww/animatediff-motion-adapter-v1-5-2":
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=movie_num_inference_steps,
guidance_scale=movie_num_guidance,
height=y,
width=x,
num_frames=duration,
generator=generator,
)
video_frames = output.frames[0]
else:
video_frames = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=movie_num_inference_steps,
guidance_scale=movie_num_guidance,
height=y,
width=x,
num_frames=duration,
generator=generator,
).frames
movie_model_card = addon_prefs.movie_model_card
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Upscale video.
if scene.video_to_video:
print("Upscale: Video")
if torch.cuda.is_available():
torch.cuda.empty_cache()
video = [
Image.fromarray(frame).resize(
(closest_divisible_32(x * 2), closest_divisible_32(y * 2))
)
for frame in video_frames
]
video_frames = upscale(
prompt,
video=video,
strength=1.00 - scene.image_power,
negative_prompt=negative_prompt,
num_inference_steps=movie_num_inference_steps,
guidance_scale=movie_num_guidance,
generator=generator,
).frames
if movie_model_card == "guoyww/animatediff-motion-adapter-v1-5-2":
# from diffusers.utils import export_to_video
# Move to folder.
video_frames = np.array(video_frames)
src_path = export_to_video(video_frames)
dst_path = solve_path(clean_filename(str(seed) + "_" + prompt) + ".mp4")
shutil.move(src_path, dst_path)
else:
# Move to folder.
src_path = export_to_video(video_frames)
dst_path = solve_path(clean_filename(str(seed) + "_" + prompt) + ".mp4")
shutil.move(src_path, dst_path)
# Add strip.
if not os.path.isfile(dst_path):
print("No resulting file found.")
return {"CANCELLED"}
for window in bpy.context.window_manager.windows:
screen = window.screen
for area in screen.areas:
if area.type == "SEQUENCE_EDITOR":
from bpy import context
with context.temp_override(window=window, area=area):
bpy.ops.sequencer.movie_strip_add(
filepath=dst_path,
frame_start=start_frame,
channel=empty_channel,
fit_method="FIT",
adjust_playback_rate=False,
sound=False,
use_framerate=False,
)
strip = scene.sequence_editor.active_strip
strip.transform.filter = "SUBSAMPLING_3x3"
scene.sequence_editor.active_strip = strip
strip.name = str(seed) + "_" + prompt
strip.use_proxy = True
bpy.ops.sequencer.rebuild_proxy()
if i > 0:
scene.frame_current = (
scene.sequence_editor.active_strip.frame_final_start
)
# Redraw UI to display the new strip. Remove this if Blender crashes: https://docs.blender.org/api/current/info_gotcha.html#can-i-redraw-during-script-execution
bpy.ops.wm.redraw_timer(type="DRAW_WIN_SWAP", iterations=1)
break
# clear the VRAM
if torch.cuda.is_available():
torch.cuda.empty_cache()
bpy.types.Scene.movie_path = ""
bpy.ops.renderreminder.play_notification()
scene.frame_current = current_frame
return {"FINISHED"}
class SEQUENCER_OT_generate_audio(Operator):
"""Generate Audio"""
bl_idname = "sequencer.generate_audio"
bl_label = "Prompt"
bl_description = "Convert text to audio"
bl_options = {"REGISTER", "UNDO"}
def execute(self, context):
scene = context.scene
if not scene.generate_movie_prompt:
self.report({"INFO"}, "Text prompt in the Generative AI tab is empty!")
return {"CANCELLED"}
if not scene.sequence_editor:
scene.sequence_editor_create()
preferences = context.preferences
addon_prefs = preferences.addons[__name__].preferences
current_frame = scene.frame_current
prompt = scene.generate_movie_prompt
negative_prompt = scene.generate_movie_negative_prompt
movie_num_inference_steps = scene.movie_num_inference_steps
movie_num_guidance = scene.movie_num_guidance
audio_length_in_s = scene.audio_length_in_f / (
scene.render.fps / scene.render.fps_base
)
try:
import torch
import scipy
from scipy.io.wavfile import write as write_wav
if (
addon_prefs.audio_model_card == "cvssp/audioldm2"
or addon_prefs.audio_model_card == "cvssp/audioldm2-music"
):
from diffusers import AudioLDM2Pipeline, DPMSolverMultistepScheduler
import scipy
from IPython.display import Audio
import xformers
if addon_prefs.audio_model_card == "facebook/musicgen-stereo-small":
# if os_platform == "Darwin" or os_platform == "Linux":
# import sox
# else:
import soundfile as sf
if addon_prefs.audio_model_card == "bark":
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import numpy as np
from bark.generation import (
generate_text_semantic,
preload_models,
)
from bark.api import semantic_to_waveform
from bark import generate_audio, SAMPLE_RATE
except ModuleNotFoundError:
print("Dependencies needs to be installed in the add-on preferences.")
self.report(
{"INFO"},
"Dependencies needs to be installed in the add-on preferences.",
)
return {"CANCELLED"}
12 months ago
show_system_console(True)
set_system_console_topmost(True)
# clear the VRAM
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("Model: " + addon_prefs.audio_model_card)
# Load models
if (
addon_prefs.audio_model_card == "cvssp/audioldm2"
or addon_prefs.audio_model_card == "cvssp/audioldm2-music"
):
repo_id = addon_prefs.audio_model_card
pipe = AudioLDM2Pipeline.from_pretrained(repo_id)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
pipe.scheduler.config
)
if low_vram():
pipe.enable_model_cpu_offload()
1 year ago
# pipe.enable_vae_slicing()
else:
pipe.to(gfx_device)
12 months ago
# Musicgen
elif addon_prefs.audio_model_card == "facebook/musicgen-stereo-small":
from transformers import pipeline
from transformers import set_seed
pipe = pipeline(
"text-to-audio",
"facebook/musicgen-stereo-small",
device="cuda:0",
torch_dtype=torch.float16,
)
if int(audio_length_in_s * 50) > 1503:
self.report({"INFO"}, "Maximum output duration is 30 sec.")
12 months ago
# Bark
elif addon_prefs.audio_model_card == "bark":
preload_models(
text_use_small=True,
coarse_use_small=True,
fine_use_gpu=True,
fine_use_small=True,
)
12 months ago
# Mustango
elif addon_prefs.audio_model_card == "declare-lab/mustango":
import IPython
import soundfile as sf
from diffusers import DiffusionPipeline
# from mustango import Mustango
# from transformers import pipeline
# from transformers import set_seed
model = DiffusionPipeline.from_pretrained(
"declare-lab/mustango"
) # , device="cuda:0", torch_dtype=torch.float16)
12 months ago
# Deadend
else:
print("Audio model not found.")
self.report({"INFO"}, "Audio model not found.")
return {"CANCELLED"}
12 months ago
# Main loop
for i in range(scene.movie_num_batch):
if i > 0:
empty_channel = scene.sequence_editor.active_strip.channel
start_frame = (
scene.sequence_editor.active_strip.frame_final_start
+ scene.sequence_editor.active_strip.frame_final_duration
)
scene.frame_current = (
scene.sequence_editor.active_strip.frame_final_start
)
else:
empty_channel = find_first_empty_channel(
scene.frame_current,
100000000000000000000,
)
start_frame = scene.frame_current
if addon_prefs.audio_model_card == "bark":
print("Generate: Speech (Bark)")
rate = 24000
GEN_TEMP = 0.6
SPEAKER = "v2/" + scene.languages + "_" + scene.speakers
silence = np.zeros(int(0.25 * rate)) # quarter second of silence
prompt = context.scene.generate_movie_prompt
prompt = prompt.replace("\n", " ").strip()
sentences = split_and_recombine_text(
prompt, desired_length=90, max_length=150
)
pieces = []
for sentence in sentences:
print("Sentence: " + sentence)
semantic_tokens = generate_text_semantic(
sentence,
history_prompt=SPEAKER,
temp=GEN_TEMP,
# min_eos_p=0.1, # this controls how likely the generation is to end
)
audio_array = semantic_to_waveform(
semantic_tokens, history_prompt=SPEAKER
)
pieces += [audio_array, silence.copy()]
audio = np.concatenate(pieces)
filename = solve_path(clean_filename(prompt + ".wav"))
# Write the combined audio to a file
write_wav(filename, rate, audio.transpose())
12 months ago
# Musicgen
elif addon_prefs.audio_model_card == "facebook/musicgen-stereo-small":
print("Generate: MusicGen Stereo")
print("Prompt: " + prompt)
seed = context.scene.movie_num_seed
seed = (
seed
if not context.scene.movie_use_random
else random.randint(0, 999999)
)
print("Seed: " + str(seed))
context.scene.movie_num_seed = seed
set_seed(seed)
music = pipe(
prompt,
forward_params={
"max_new_tokens": int(min(audio_length_in_s * 50, 1503))
},
)
filename = solve_path(clean_filename(str(seed) + "_" + prompt) + ".wav")
rate = 48000
# if os_platform == "Darwin" or os_platform == "Linux":
# tfm = sox.Transformer()
# tfm.build_file(
# input_array=music["audio"][0].T,
# sample_rate_in=music["sampling_rate"],
# output_filepath=filename
# )
# else:
12 months ago
sf.write(filename, music["audio"][0].T, music["sampling_rate"])
elif addon_prefs.audio_model_card == "declare-lab/mustango":
music = model.generate(prompt)
sf.write(filename, audio, samplerate=16000)
IPython.display.Audio(data=audio, rate=16000)
else: # AudioLDM
print("Generate: Audio/music (AudioLDM)")
seed = context.scene.movie_num_seed
seed = (
seed
if not context.scene.movie_use_random
else random.randint(0, 999999)
)
print("Seed: " + str(seed))
context.scene.movie_num_seed = seed
# Use cuda if possible
if torch.cuda.is_available():
generator = (
torch.Generator("cuda").manual_seed(seed) if seed != 0 else None
)
else:
if seed != 0:
generator = torch.Generator()
generator.manual_seed(seed)
else:
generator = None
prompt = context.scene.generate_movie_prompt
print("Prompt: " + prompt)
audio = pipe(
prompt,
num_inference_steps=movie_num_inference_steps,
audio_length_in_s=audio_length_in_s,
guidance_scale=movie_num_guidance,
generator=generator,
).audios[0]
rate = 16000
filename = solve_path(str(seed) + "_" + prompt + ".wav")
write_wav(filename, rate, audio.transpose())
filepath = filename
if os.path.isfile(filepath):
empty_channel = find_first_empty_channel(
start_frame, start_frame + scene.audio_length_in_f
)
strip = scene.sequence_editor.sequences.new_sound(
name=prompt,
filepath=filepath,
channel=empty_channel,
frame_start=start_frame,
)
scene.sequence_editor.active_strip = strip
if i > 0:
scene.frame_current = (
scene.sequence_editor.active_strip.frame_final_start
)
# Redraw UI to display the new strip. Remove this if Blender crashes:
# https://docs.blender.org/api/current/info_gotcha.html#can-i-redraw-during-script-execution
bpy.ops.wm.redraw_timer(type="DRAW_WIN_SWAP", iterations=1)
else:
print("No resulting file found!")
# clear the VRAM
if torch.cuda.is_available():
torch.cuda.empty_cache()
bpy.ops.renderreminder.play_notification()
return {"FINISHED"}
class SEQUENCER_OT_generate_image(Operator):
"""Generate Image"""
bl_idname = "sequencer.generate_image"
bl_label = "Prompt"
bl_description = "Convert text to image"
bl_options = {"REGISTER", "UNDO"}
def execute(self, context):
scene = context.scene
seq_editor = scene.sequence_editor
preferences = context.preferences
addon_prefs = preferences.addons[__name__].preferences
image_model_card = addon_prefs.image_model_card
strips = context.selected_sequences
type = scene.generatorai_typeselect
use_strip_data = addon_prefs.use_strip_data
pipe = None
refiner = None
converter = None
guidance = scene.movie_num_guidance
if (
scene.generate_movie_prompt == ""
and not image_model_card == "lllyasviel/sd-controlnet-canny"
and not image_model_card == "Salesforce/blipdiffusion"
and not image_model_card == "monster-labs/control_v1p_sd15_qrcode_monster"
):
self.report({"INFO"}, "Text prompt in the Generative AI tab is empty!")
return {"CANCELLED"}
show_system_console(True)
set_system_console_topmost(True)
if not seq_editor:
scene.sequence_editor_create()
try:
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import pt_to_pil
import torch
import requests
from diffusers.utils import load_image
import numpy as np
import PIL
import cv2
from PIL import Image
from .free_lunch_utils import (
register_free_upblock2d,
register_free_crossattn_upblock2d,
)
# from compel import Compel
except ModuleNotFoundError:
print("Dependencies needs to be installed in the add-on preferences.")
self.report(
{"INFO"},
"Dependencies needs to be installed in the add-on preferences.",
)
return {"CANCELLED"}
# clear the VRAM
if torch.cuda.is_available():
torch.cuda.empty_cache()
current_frame = scene.frame_current
type = scene.generatorai_typeselect
input = scene.input_strips
prompt = style_prompt(scene.generate_movie_prompt)[0]
negative_prompt = (
scene.generate_movie_negative_prompt
+ ", "
+ style_prompt(scene.generate_movie_prompt)[1]
+ ", nsfw, nude, nudity,"
)
image_x = scene.generate_movie_x
image_y = scene.generate_movie_y
x = scene.generate_movie_x = closest_divisible_32(image_x)
y = scene.generate_movie_y = closest_divisible_32(image_y)
duration = scene.generate_movie_frames
image_num_inference_steps = scene.movie_num_inference_steps
image_num_guidance = scene.movie_num_guidance
active_strip = context.scene.sequence_editor.active_strip
do_inpaint = (
input == "input_strips"
and find_strip_by_name(scene, scene.inpaint_selected_strip)
and type == "image"
and not image_model_card == "lllyasviel/sd-controlnet-canny"
and not image_model_card == "lllyasviel/sd-controlnet-openpose"
and not image_model_card == "lllyasviel/control_v11p_sd15_scribble"
and not image_model_card == "monster-labs/control_v1p_sd15_qrcode_monster"
and not image_model_card == "Salesforce/blipdiffusion"
)
do_convert = (
(scene.image_path or scene.movie_path)
and not image_model_card == "lllyasviel/sd-controlnet-canny"
and not image_model_card == "lllyasviel/sd-controlnet-openpose"
and not image_model_card == "lllyasviel/control_v11p_sd15_scribble"
and not image_model_card == "monster-labs/control_v1p_sd15_qrcode_monster"
and not image_model_card == "Salesforce/blipdiffusion"
and not do_inpaint
)
do_refine = (
scene.refine_sd and not do_convert
)
if (
do_inpaint
or do_convert
or image_model_card == "lllyasviel/sd-controlnet-canny"
or image_model_card == "lllyasviel/sd-controlnet-openpose"
or image_model_card == "lllyasviel/control_v11p_sd15_scribble"
or image_model_card == "monster-labs/control_v1p_sd15_qrcode_monster"
or image_model_card == "Salesforce/blipdiffusion"
):
if not strips:
self.report({"INFO"}, "Select strip(s) for processing.")
return {"CANCELLED"}
for strip in strips:
if strip.type in {"MOVIE", "IMAGE", "TEXT", "SCENE"}:
break
else:
self.report(
{"INFO"},
"None of the selected strips are movie, image, text or scene types.",
)
return {"CANCELLED"}
12 months ago
# LOADING MODELS
# models for inpaint
if do_inpaint:
print("Load: Inpaint Model")
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image
# clear the VRAM
if torch.cuda.is_available():
torch.cuda.empty_cache()
pipe = AutoPipelineForInpainting.from_pretrained(
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
torch_dtype=torch.float16,
variant="fp16",
).to(gfx_device)
# Set scheduler
if scene.use_lcm:
from diffusers import LCMScheduler
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
# load LCM-LoRA
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
pipe.fuse_lora()
pipe.watermark = NoWatermark()
if low_vram():
# torch.cuda.set_per_process_memory_fraction(0.99)
pipe.enable_model_cpu_offload()
else:
pipe.to(gfx_device)
12 months ago
# Conversion img2img/vid2img.
elif (
do_convert
and image_model_card != "warp-ai/wuerstchen"
and image_model_card != "Lykon/dreamshaper-7"
):
print("Load: img2img/vid2img Model")
print("Conversion Model: " + image_model_card)
if image_model_card == "stabilityai/stable-diffusion-xl-base-1.0":
from diffusers import StableDiffusionXLImg2ImgPipeline, AutoencoderKL
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
)
converter = StableDiffusionXLImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0",
# text_encoder_2=pipe.text_encoder_2,
vae=vae,
torch_dtype=torch.float16,
variant="fp16",
)
else:
from diffusers import AutoPipelineForImage2Image
converter = AutoPipelineForImage2Image.from_pretrained(
image_model_card, torch_dtype=torch.float16, variant="fp16"
)
converter.watermark = NoWatermark()
if low_vram():
converter.enable_model_cpu_offload()
# refiner.enable_vae_tiling()
# converter.enable_vae_slicing()
else:
converter.to(gfx_device)
12 months ago
# ControlNet & Illusion
elif (
image_model_card == "lllyasviel/sd-controlnet-canny"
or image_model_card == "monster-labs/control_v1p_sd15_qrcode_monster"
):
print("Load: ControlNet Model or Illusion")
from diffusers import (
StableDiffusionControlNetPipeline,
ControlNetModel,
UniPCMultistepScheduler,
)
controlnet = ControlNetModel.from_pretrained(
image_model_card, torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
torch_dtype=torch.float16,
safety_checker=None,
) # safety_checker=None,
if scene.use_lcm:
from diffusers import LCMScheduler
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
1 year ago
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
pipe.fuse_lora()
scene.movie_num_guidance = 0
else:
pipe.scheduler = UniPCMultistepScheduler.from_config(
pipe.scheduler.config
)
if low_vram():
pipe.enable_xformers_memory_efficient_attention()
pipe.enable_model_cpu_offload()
1 year ago
# pipe.enable_vae_slicing()
else:
pipe.to(gfx_device)
12 months ago
# Blip
elif image_model_card == "Salesforce/blipdiffusion":
print("Load: Blip Model")
from diffusers.utils import load_image
import torch
if not find_strip_by_name(scene, scene.blip_subject_image):
from diffusers.pipelines import BlipDiffusionPipeline
pipe = BlipDiffusionPipeline.from_pretrained(
"Salesforce/blipdiffusion", torch_dtype=torch.float16
).to(gfx_device)
else:
from controlnet_aux import CannyDetector
from diffusers.pipelines import BlipDiffusionControlNetPipeline
pipe = BlipDiffusionControlNetPipeline.from_pretrained(
"Salesforce/blipdiffusion-controlnet", torch_dtype=torch.float16
).to(gfx_device)
12 months ago
# OpenPose
elif image_model_card == "lllyasviel/sd-controlnet-openpose":
print("Load: OpenPose Model")
# NOTE: Is it working on Pose Rig Bones too?
from diffusers import (
StableDiffusionControlNetPipeline,
ControlNetModel,
UniPCMultistepScheduler,
)
from controlnet_aux import OpenposeDetector
# controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16) #safety_checker=None)
# pipe = StableDiffusionControlNetPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16) #safety_checker=None,
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
torch_dtype=torch.float16,
) # safety_checker=None,
if scene.use_lcm:
from diffusers import LCMScheduler
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
1 year ago
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
pipe.fuse_lora()
scene.movie_num_guidance = 0
else:
pipe.scheduler = UniPCMultistepScheduler.from_config(
pipe.scheduler.config
)
if low_vram():
pipe.enable_xformers_memory_efficient_attention()
pipe.enable_model_cpu_offload()
1 year ago
# pipe.enable_vae_slicing()
else:
pipe.to(gfx_device)
12 months ago
# Scribble
elif image_model_card == "lllyasviel/control_v11p_sd15_scribble":
print("Load: Scribble Model")
from controlnet_aux import PidiNetDetector, HEDdetector
from diffusers import (
ControlNetModel,
StableDiffusionControlNetPipeline,
UniPCMultistepScheduler,
)
processor = HEDdetector.from_pretrained("lllyasviel/Annotators")
checkpoint = "lllyasviel/control_v11p_sd15_scribble"
controlnet = ControlNetModel.from_pretrained(
checkpoint, torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
torch_dtype=torch.float16,
)
if scene.use_lcm:
from diffusers import LCMScheduler
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
1 year ago
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
pipe.fuse_lora()
scene.movie_num_guidance = 0
else:
pipe.scheduler = UniPCMultistepScheduler.from_config(
pipe.scheduler.config
)
if low_vram():
# torch.cuda.set_per_process_memory_fraction(0.95) # 6 GB VRAM
pipe.enable_model_cpu_offload()
# pipe.enable_vae_slicing()
# pipe.enable_forward_chunking(chunk_size=1, dim=1)
else:
pipe.to(gfx_device)
12 months ago
# Dreamshaper
elif image_model_card == "Lykon/dreamshaper-7":
if do_convert:
print(
image_model_card
+ " does not support img2img or img2vid. Ignoring input strip."
)
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
"Lykon/dreamshaper-7", torch_dtype=torch.float16
) # , custom_pipeline="latent_consistency_txt2img"
pipe.to(torch_device="cuda", torch_dtype=torch.float16)
12 months ago
# Wuerstchen
elif image_model_card == "warp-ai/wuerstchen":
print("Load: Würstchen Model")
if do_convert:
print(
image_model_card
+ " does not support img2img or img2vid. Ignoring input strip."
)
from diffusers import AutoPipelineForText2Image
# from diffusers import DiffusionPipeline
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
pipe = AutoPipelineForText2Image.from_pretrained(
"warp-ai/wuerstchen",
torch_dtype=torch.float16,
)
if low_vram():
pipe.enable_model_cpu_offload()
else:
pipe.to(gfx_device)
12 months ago
# DeepFloyd
elif image_model_card == "DeepFloyd/IF-I-M-v1.0":
print("Load: DeepFloyd Model")
if do_convert:
print(
image_model_card
+ " does not support img2img or img2vid. Ignoring input strip."
)
from huggingface_hub.commands.user import login
result = login(token=addon_prefs.hugginface_token)
# stage 1
stage_1 = DiffusionPipeline.from_pretrained(
"DeepFloyd/IF-I-M-v1.0", variant="fp16", torch_dtype=torch.float16
)
if low_vram():
stage_1.enable_model_cpu_offload()
else:
stage_1.to(gfx_device)
12 months ago
# stage 2
stage_2 = DiffusionPipeline.from_pretrained(
"DeepFloyd/IF-II-M-v1.0",
text_encoder=None,
variant="fp16",
torch_dtype=torch.float16,
)
if low_vram():
stage_2.enable_model_cpu_offload()
else:
stage_2.to(gfx_device)
12 months ago
# stage 3
safety_modules = {
"feature_extractor": stage_1.feature_extractor,
"safety_checker": stage_1.safety_checker,
"watermarker": stage_1.watermarker,
}
stage_3 = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-x4-upscaler",
**safety_modules,
torch_dtype=torch.float16,
)
if low_vram():
stage_3.enable_model_cpu_offload()
else:
stage_3.to(gfx_device)
# Stable diffusion etc.
else:
print("Load: " + image_model_card + " Model")
1 year ago
enabled_items = None
if image_model_card == "stabilityai/stable-diffusion-xl-base-1.0":
from diffusers import AutoencoderKL
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
)
pipe = DiffusionPipeline.from_pretrained(
image_model_card,
vae=vae,
torch_dtype=torch.float16,
variant="fp16",
)
elif image_model_card == "runwayml/stable-diffusion-v1-5":
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16, # vae=vae,
)
else:
from diffusers import AutoPipelineForText2Image
pipe = AutoPipelineForText2Image.from_pretrained(
image_model_card,
torch_dtype=torch.float16,
variant="fp16",
)
if scene.use_lcm:
print("Use LCM: True")
from diffusers import LCMScheduler
if image_model_card == "stabilityai/stable-diffusion-xl-base-1.0":
scene.movie_num_guidance = 0
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
1 year ago
pipe.fuse_lora()
elif image_model_card == "segmind/SSD-1B":
scene.movie_num_guidance = 0
pipe.load_lora_weights("latent-consistency/lcm-lora-ssd-1b")
1 year ago
pipe.fuse_lora()
elif image_model_card == "latent-consistency/lcm-lora-sdv1-5":
scene.movie_num_guidance = 0
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
1 year ago
pipe.fuse_lora()
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
else:
print("Use LCM: False")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
pipe.scheduler.config
)
pipe.watermark = NoWatermark()
if low_vram():
# torch.cuda.set_per_process_memory_fraction(0.95) # 6 GB VRAM
pipe.enable_model_cpu_offload()
#pipe.enable_vae_slicing()
else:
pipe.to(gfx_device)
if scene.use_freeU and pipe: # Free Lunch
# -------- freeu block registration
print("Process: FreeU")
register_free_upblock2d(pipe, b1=1.1, b2=1.2, s1=0.6, s2=0.4)
register_free_crossattn_upblock2d(pipe, b1=1.1, b2=1.2, s1=0.6, s2=0.4)
# -------- freeu block registration
# LoRA
if (
image_model_card == "stabilityai/stable-diffusion-xl-base-1.0"
or image_model_card == "runwayml/stable-diffusion-v1-5"
or image_model_card == "stabilityai/sdxl-turbo"
):
scene = context.scene
lora_files = scene.lora_files
enabled_names = []
enabled_weights = []
# Check if there are any enabled items before loading
enabled_items = [item for item in lora_files if item.enabled]
if enabled_items:
for item in enabled_items:
enabled_names.append(
(clean_filename(item.name)).replace(".", "")
)
enabled_weights.append(item.weight_value)
pipe.load_lora_weights(
bpy.path.abspath(scene.lora_folder),
weight_name=item.name + ".safetensors",
adapter_name=((clean_filename(item.name)).replace(".", "")),
)
pipe.set_adapters(enabled_names, adapter_weights=enabled_weights)
print("Load LoRAs: " + " ".join(enabled_names))
12 months ago
# load refiner model if chosen.
if do_refine:
print(
"Load Refine Model: " + "stabilityai/stable-diffusion-xl-refiner-1.0"
)
from diffusers import StableDiffusionXLImg2ImgPipeline, AutoencoderKL
1 year ago
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
)
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0",
vae=vae,
torch_dtype=torch.float16,
variant="fp16",
)
refiner.watermark = NoWatermark()
if low_vram():
refiner.enable_model_cpu_offload()
#refiner.enable_vae_tiling()
#refiner.enable_vae_slicing()
else:
refiner.to(gfx_device)
1 year ago
# # Allow longer prompts.
# if image_model_card == "runwayml/stable-diffusion-v1-5":
# if pipe:
# compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)
# if refiner:
# compel = Compel(tokenizer=refiner.tokenizer, text_encoder=refiner.text_encoder)
# if converter:
# compel = Compel(tokenizer=converter.tokenizer, text_encoder=converter.text_encoder)
1 year ago
# prompt_embed = compel.build_conditioning_tensor(prompt)
# Main Generate Loop:
for i in range(scene.movie_num_batch):
# Find free space for the strip in the timeline.
if i > 0:
empty_channel = scene.sequence_editor.active_strip.channel
start_frame = (
scene.sequence_editor.active_strip.frame_final_start
+ scene.sequence_editor.active_strip.frame_final_duration
)
scene.frame_current = (
scene.sequence_editor.active_strip.frame_final_start
)
else:
empty_channel = find_first_empty_channel(
scene.frame_current,
(scene.movie_num_batch * duration) + scene.frame_current,
)
start_frame = scene.frame_current
# Generate seed.
seed = context.scene.movie_num_seed
seed = (
seed
if not context.scene.movie_use_random
else random.randint(-2147483647, 2147483647)
)
print("Seed: " + str(seed))
context.scene.movie_num_seed = seed
# Use cuda if possible.
if torch.cuda.is_available():
generator = (
torch.Generator("cuda").manual_seed(seed) if seed != 0 else None
)
else:
if seed != 0:
generator = torch.Generator()
generator.manual_seed(seed)
else:
generator = None
# DeepFloyd process:
if image_model_card == "DeepFloyd/IF-I-M-v1.0":
prompt_embeds, negative_embeds = stage_1.encode_prompt(
prompt, negative_prompt
)
# stage 1
image = stage_1(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
generator=generator,
output_type="pt",
).images
pt_to_pil(image)[0].save("./if_stage_I.png")
# stage 2
image = stage_2(
image=image,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
generator=generator,
output_type="pt",
).images
pt_to_pil(image)[0].save("./if_stage_II.png")
# stage 3
image = stage_3(
prompt=prompt, image=image, noise_level=100, generator=generator
).images
# image[0].save("./if_stage_III.png")
image = image[0]
elif image_model_card == "warp-ai/wuerstchen":
scene.generate_movie_y = y = closest_divisible_128(y)
scene.generate_movie_x = x = closest_divisible_128(x)
print("Generate: Image with Würstchen")
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=image_num_inference_steps,
decoder_guidance_scale=0.0,
# image_embeddings=None,
prior_guidance_scale=image_num_guidance,
prior_timesteps=DEFAULT_STAGE_C_TIMESTEPS,
height=y,
width=x,
generator=generator,
).images[0]
# ControlNet
elif (
image_model_card == "lllyasviel/sd-controlnet-canny"
or image_model_card == "monster-labs/control_v1p_sd15_qrcode_monster"
):
print("Process: ControlNet")
init_image = None
if scene.image_path:
init_image = load_first_frame(scene.image_path)
if scene.movie_path:
init_image = load_first_frame(scene.movie_path)
if not init_image:
print("Loading strip failed!")
return {"CANCELLED"}
init_image = init_image.resize((x, y))
if image_model_card == "lllyasviel/sd-controlnet-canny":
image = np.array(init_image)
low_threshold = 100
high_threshold = 200
image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
canny_image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(canny_image)
# canny_image = np.array(canny_image)
else:
canny_image = init_image
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=canny_image,
num_inference_steps=image_num_inference_steps, # Should be around 50
# guidance_scale=clamp_value(
# image_num_guidance, 3, 5
# ), # Should be between 3 and 5.
# # guess_mode=True, #NOTE: Maybe the individual methods should be selectable instead?
# height=y,
# width=x,
# generator=generator,
).images[0]
elif image_model_card == "Lykon/dreamshaper-7":
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=image_num_inference_steps,
guidance_scale=image_num_guidance,
lcm_origin_steps=50,
height=y,
width=x,
generator=generator,
output_type="pil",
).images[0]
# OpenPose
elif image_model_card == "lllyasviel/sd-controlnet-openpose":
print("Process: OpenPose")
init_image = None
if scene.image_path:
init_image = load_first_frame(scene.image_path)
if scene.movie_path:
init_image = load_first_frame(scene.movie_path)
if not init_image:
print("Loading strip failed!")
return {"CANCELLED"}
image = init_image.resize((x, y))
if not scene.openpose_use_bones:
image = np.array(image)
image = openpose(image)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=image,
num_inference_steps=image_num_inference_steps,
guidance_scale=image_num_guidance,
height=y,
width=x,
generator=generator,
).images[0]
# Scribble
elif image_model_card == "lllyasviel/control_v11p_sd15_scribble":
print("Process: Scribble")
init_image = None
if scene.image_path:
init_image = load_first_frame(scene.image_path)
if scene.movie_path:
init_image = load_first_frame(scene.movie_path)
if not init_image:
print("Loading strip failed!")
return {"CANCELLED"}
image = init_image.resize((x, y))
if scene.use_scribble_image:
image = np.array(image)
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image = cv2.bitwise_not(image)
image = processor(image, scribble=False)
else:
image = np.array(image)
image = processor(image, scribble=True)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=image,
num_inference_steps=image_num_inference_steps,
guidance_scale=image_num_guidance,
height=y,
width=x,
generator=generator,
).images[0]
# Blip
elif image_model_card == "Salesforce/blipdiffusion":
print("Process: Subject Driven")
text_prompt_input = prompt
style_subject = str(scene.blip_cond_subject)
tgt_subject = str(scene.blip_tgt_subject)
init_image = None
if scene.image_path:
init_image = load_first_frame(scene.image_path)
if scene.movie_path:
init_image = load_first_frame(scene.movie_path)
if not init_image:
print("Loading strip failed!")
return {"CANCELLED"}
init_image = init_image.resize((x, y))
style_image = init_image
subject_strip = find_strip_by_name(scene, scene.blip_subject_image)
if subject_strip:
if (
subject_strip.type == "MASK"
or subject_strip.type == "COLOR"
or subject_strip.type == "SCENE"
or subject_strip.type == "META"
):
subject_strip = get_render_strip(self, context, subject_strip)
subject_path = get_strip_path(subject_strip)
cldm_cond_image = load_first_frame(subject_path)
canny = CannyDetector()
cldm_cond_image = canny(cldm_cond_image, 30, 70, output_type="pil")
if cldm_cond_image:
cldm_cond_image = cldm_cond_image.resize((x, y))
image = pipe(
text_prompt_input,
style_image,
cldm_cond_image,
style_subject,
tgt_subject,
guidance_scale=image_num_guidance,
num_inference_steps=image_num_inference_steps,
neg_prompt=negative_prompt,
height=y,
width=x,
generator=generator,
).images[0]
else:
print("Subject strip loading failed!")
subject_strip = ""
if not subject_strip:
image = pipe(
text_prompt_input,
style_image,
style_subject,
tgt_subject,
guidance_scale=image_num_guidance,
num_inference_steps=image_num_inference_steps,
neg_prompt=negative_prompt,
height=y,
width=x,
generator=generator,
).images[0]
# Inpaint
elif do_inpaint:
print("Process: Inpaint")
mask_strip = find_strip_by_name(scene, scene.inpaint_selected_strip)
if not mask_strip:
print("Selected mask not found!")
return {"CANCELLED"}
if (
mask_strip.type == "MASK"
or mask_strip.type == "COLOR"
or mask_strip.type == "SCENE"
or mask_strip.type == "META"
):
mask_strip = get_render_strip(self, context, mask_strip)
mask_path = get_strip_path(mask_strip)
mask_image = load_first_frame(mask_path)
if not mask_image:
print("Loading mask failed!")
return
mask_image = mask_image.resize((x, y))
if scene.image_path:
init_image = load_first_frame(scene.image_path)
if scene.movie_path:
init_image = load_first_frame(scene.movie_path)
if not init_image:
print("Loading strip failed!")
return {"CANCELLED"}
init_image = init_image.resize((x, y))
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=init_image,
mask_image=mask_image,
num_inference_steps=image_num_inference_steps,
guidance_scale=image_num_guidance,
height=y,
width=x,
generator=generator,
).images[0]
# Limit inpaint to maske area:
# Convert mask to grayscale NumPy array
mask_image_arr = np.array(mask_image.convert("L"))
# Add a channel dimension to the end of the grayscale mask
mask_image_arr = mask_image_arr[:, :, None]
mask_image_arr = mask_image_arr.astype(np.float32) / 255.0
mask_image_arr[mask_image_arr < 0.5] = 0
mask_image_arr[mask_image_arr >= 0.5] = 1
# Take the masked pixels from the repainted image and the unmasked pixels from the initial image
unmasked_unchanged_image_arr = (
1 - mask_image_arr
) * init_image + mask_image_arr * image
image = PIL.Image.fromarray(
unmasked_unchanged_image_arr.astype("uint8")
)
delete_strip(mask_strip)
# Img2img
elif do_convert:
if scene.movie_path:
print("Process: Video to Image")
init_image = load_first_frame(scene.movie_path)
init_image = init_image.resize((x, y))
elif scene.image_path:
print("Process: Image to Image")
init_image = load_first_frame(scene.image_path)
init_image = init_image.resize((x, y))
# init_image = load_image(scene.image_path).convert("RGB")
if image_model_card == "stabilityai/sdxl-turbo" or image_model_card == "stabilityai/sd-turbo":
image = converter(
prompt=prompt,
image=init_image,
strength=1.00 - scene.image_power,
# negative_prompt=negative_prompt,
num_inference_steps=image_num_inference_steps,
guidance_scale=0.0,
generator=generator,
).images[0]
else:
image = converter(
prompt=prompt,
image=init_image,
strength=1.00 - scene.image_power,
negative_prompt=negative_prompt,
num_inference_steps=image_num_inference_steps,
guidance_scale=image_num_guidance,
generator=generator,
).images[0]
# Generate Stable Diffusion etc.
else:
print("Generate: Image ")
if image_model_card == "stabilityai/sdxl-turbo":
# LoRA.
if enabled_items:
image = pipe(
# prompt_embeds=prompt, # for compel - long prompts
prompt,
# negative_prompt=negative_prompt,
num_inference_steps=image_num_inference_steps,
guidance_scale=0.0,
height=y,
width=x,
cross_attention_kwargs={"scale": 1.0},
generator=generator,
).images[0]
# No LoRA.
else:
image = pipe(
# prompt_embeds=prompt, # for compel - long prompts
prompt,
# negative_prompt=negative_prompt,
num_inference_steps=image_num_inference_steps,
guidance_scale=0.0,
height=y,
width=x,
generator=generator,
).images[0]
else:
# LoRA.
if enabled_items:
image = pipe(
# prompt_embeds=prompt, # for compel - long prompts
prompt,
negative_prompt=negative_prompt,
num_inference_steps=image_num_inference_steps,
guidance_scale=image_num_guidance,
height=y,
width=x,
cross_attention_kwargs={"scale": 1.0},
generator=generator,
).images[0]
# No LoRA.
else:
image = pipe(
# prompt_embeds=prompt, # for compel - long prompts
prompt,
negative_prompt=negative_prompt,
num_inference_steps=image_num_inference_steps,
guidance_scale=image_num_guidance,
height=y,
width=x,
generator=generator,
).images[0]
# Add refiner
if do_refine:
print("Refine: Image")
image = refiner(
prompt=prompt,
image=image,
strength=max(1.00 - scene.image_power, 0.1),
negative_prompt=negative_prompt,
num_inference_steps=image_num_inference_steps,
guidance_scale=max(image_num_guidance, 1.1),
generator=generator,
).images[0]
# Move to folder
filename = clean_filename(
str(seed) + "_" + context.scene.generate_movie_prompt
)
out_path = solve_path(filename + ".png")
image.save(out_path)
# Add strip
if os.path.isfile(out_path):
strip = scene.sequence_editor.sequences.new_image(
name=str(seed) + "_" + context.scene.generate_movie_prompt,
frame_start=start_frame,
filepath=out_path,
channel=empty_channel,
fit_method="FIT",
)
strip.frame_final_duration = scene.generate_movie_frames
strip.transform.filter = "SUBSAMPLING_3x3"
scene.sequence_editor.active_strip = strip
if i > 0:
scene.frame_current = (
scene.sequence_editor.active_strip.frame_final_start
)
strip.use_proxy = True
# bpy.ops.sequencer.rebuild_proxy()
else:
print("No resulting file found.")
# clear the VRAM
if torch.cuda.is_available():
torch.cuda.empty_cache()
for window in bpy.context.window_manager.windows:
screen = window.screen
for area in screen.areas:
if area.type == "SEQUENCE_EDITOR":
from bpy import context
with context.temp_override(window=window, area=area):
if i > 0:
scene.frame_current = (
scene.sequence_editor.active_strip.frame_final_start
)
# Redraw UI to display the new strip. Remove this if Blender crashes: https://docs.blender.org/api/current/info_gotcha.html#can-i-redraw-during-script-execution
bpy.ops.wm.redraw_timer(type="DRAW_WIN_SWAP", iterations=1)
break
scene.movie_num_guidance = guidance
bpy.ops.renderreminder.play_notification()
scene.frame_current = current_frame
# clear the VRAM
if torch.cuda.is_available():
torch.cuda.empty_cache()
return {"FINISHED"}
def clean_string(input_string):
# Words to be removed
words_to_remove = ["araffe", "arafed", "there is", "there are "]
for word in words_to_remove:
input_string = input_string.replace(word, "")
input_string = input_string.strip()
# Capitalize the first letter
input_string = input_string[:1].capitalize() + input_string[1:]
# Add a full stop at the end
input_string += "."
return input_string
class SEQUENCER_OT_generate_text(Operator):
"""Generate Text"""
bl_idname = "sequencer.generate_text"
bl_label = "Prompt"
bl_description = "Generate texts from strips"
bl_options = {"REGISTER", "UNDO"}
def execute(self, context):
scene = context.scene
seq_editor = scene.sequence_editor
preferences = context.preferences
addon_prefs = preferences.addons[__name__].preferences
guidance = scene.movie_num_guidance
current_frame = scene.frame_current
prompt = style_prompt(scene.generate_movie_prompt)[0]
x = scene.generate_movie_x = closest_divisible_32(scene.generate_movie_x)
y = scene.generate_movie_y = closest_divisible_32(scene.generate_movie_y)
duration = scene.generate_movie_frames
render = bpy.context.scene.render
fps = render.fps / render.fps_base
show_system_console(True)
set_system_console_topmost(True)
if not seq_editor:
scene.sequence_editor_create()
active_strip = context.scene.sequence_editor.active_strip
try:
import torch
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
except ModuleNotFoundError:
print("Dependencies need to be installed in the add-on preferences.")
self.report(
{"INFO"},
"Dependencies need to be installed in the add-on preferences.",
)
return {"CANCELLED"}
# clear the VRAM
if torch.cuda.is_available():
torch.cuda.empty_cache()
processor = BlipProcessor.from_pretrained(
"Salesforce/blip-image-captioning-large"
)
model = BlipForConditionalGeneration.from_pretrained(
"Salesforce/blip-image-captioning-large", torch_dtype=torch.float16
).to(gfx_device)
init_image = (
load_first_frame(scene.movie_path)
if scene.movie_path
else load_first_frame(scene.image_path)
)
init_image = init_image.resize((x, y))
text = ""
inputs = processor(init_image, text, return_tensors="pt").to(
gfx_device, torch.float16
)
out = model.generate(**inputs, max_new_tokens=256)
text = processor.decode(out[0], skip_special_tokens=True)
text = clean_string(text)
print("Generated text: " + text)
# Find free space for the strip in the timeline.
if (
active_strip.frame_final_start
<= current_frame
<= (active_strip.frame_final_start + active_strip.frame_final_duration)
):
empty_channel = find_first_empty_channel(
scene.frame_current,
(scene.sequence_editor.active_strip.frame_final_duration)
+ scene.frame_current,
)
start_frame = scene.frame_current
else:
empty_channel = find_first_empty_channel(
scene.sequence_editor.active_strip.frame_final_start,
scene.sequence_editor.active_strip.frame_final_end,
)
start_frame = scene.sequence_editor.active_strip.frame_final_start
scene.frame_current = scene.sequence_editor.active_strip.frame_final_start
# Add strip
if text:
print(str(start_frame))
strip = scene.sequence_editor.sequences.new_effect(
name=text,
type="TEXT",
frame_start=start_frame,
frame_end=int(start_frame + ((len(text) / 12) * fps)),
channel=empty_channel,
)
strip.text = text
strip.wrap_width = 0.68
strip.font_size = 44
strip.location[0] = 0.5
strip.location[1] = 0.2
strip.align_x = "CENTER"
strip.align_y = "TOP"
strip.use_shadow = True
strip.use_box = True
scene.sequence_editor.active_strip = strip
for window in bpy.context.window_manager.windows:
screen = window.screen
for area in screen.areas:
if area.type == "SEQUENCE_EDITOR":
from bpy import context
with context.temp_override(window=window, area=area):
if (
active_strip.frame_final_start
<= scene.frame_current
<= (
active_strip.frame_final_start
+ active_strip.frame_final_duration
)
):
pass
else:
scene.frame_current = (
scene.sequence_editor.active_strip.frame_final_start
)
# Redraw UI to display the new strip.
bpy.ops.wm.redraw_timer(type="DRAW_WIN_SWAP", iterations=1)
break
scene.movie_num_guidance = guidance
bpy.ops.renderreminder.play_notification()
scene.frame_current = current_frame
# clear the VRAM
if torch.cuda.is_available():
torch.cuda.empty_cache()
return {"FINISHED"}
class SEQUENCER_OT_strip_to_generatorAI(Operator):
"""Convert selected text strips to Generative AI"""
bl_idname = "sequencer.text_to_generator"
bl_label = "Generative AI"
bl_options = {"INTERNAL"}
bl_description = "Adds selected strips as inputs to the Generative AI process"
@classmethod
def poll(cls, context):
return context.scene and context.scene.sequence_editor
def execute(self, context):
bpy.types.Scene.movie_path = ""
bpy.types.Scene.image_path = ""
preferences = context.preferences
addon_prefs = preferences.addons[__name__].preferences
play_sound = addon_prefs.playsound
addon_prefs.playsound = False
scene = context.scene
sequencer = bpy.ops.sequencer
sequences = bpy.context.sequences
strips = context.selected_sequences
active_strip = context.scene.sequence_editor.active_strip
prompt = scene.generate_movie_prompt
negative_prompt = scene.generate_movie_negative_prompt
current_frame = scene.frame_current
type = scene.generatorai_typeselect
seed = scene.movie_num_seed
use_random = scene.movie_use_random
use_strip_data = addon_prefs.use_strip_data
temp_strip = None
if not strips:
self.report({"INFO"}, "Select strip(s) for processing.")
return {"CANCELLED"}
else:
12 months ago
print("\nStrip input processing started (Ctrl+C to Cancel).")
for strip in strips:
if strip.type in {"MOVIE", "IMAGE", "TEXT", "SCENE"}:
break
else:
self.report(
{"INFO"},
"None of the selected strips are movie, image, text or scene types.",
)
return {"CANCELLED"}
if type == "text":
for strip in strips:
if strip.type in {"MOVIE", "IMAGE"}:
print("Process: Image Captioning")
break
else:
self.report(
{"INFO"},
"None of the selected strips are movie or image.",
)
return {"CANCELLED"}
if use_strip_data:
print("Use file seed and prompt: Yes")
else:
print("Use file seed and prompt: No")
import torch
import scipy
total_vram = 0
for i in range(torch.cuda.device_count()):
properties = torch.cuda.get_device_properties(i)
total_vram += properties.total_memory
print("Total VRAM: " + str(total_vram))
print("Total GPU Cards: " + str(torch.cuda.device_count()))
for count, strip in enumerate(strips):
for dsel_strip in bpy.context.scene.sequence_editor.sequences:
dsel_strip.select = False
strip.select = True
# render intermediate mp4 file
if strip.type == "SCENE" or strip.type == "MOVIE":
# Make the current frame overlapped frame, the temp strip.
if type == "image" or type == "text":
trim_frame = find_overlapping_frame(strip, current_frame)
if trim_frame and len(strips) == 1:
bpy.ops.sequencer.copy()
bpy.ops.sequencer.paste()
intermediate_strip = bpy.context.selected_sequences[0]
intermediate_strip.frame_start = strip.frame_start
intermediate_strip.frame_offset_start = int(trim_frame)
intermediate_strip.frame_final_duration = 1
temp_strip = strip = get_render_strip(
self, context, intermediate_strip
)
if intermediate_strip is not None:
delete_strip(intermediate_strip)
elif type == "text":
bpy.ops.sequencer.copy()
bpy.ops.sequencer.paste(keep_offset=True)
intermediate_strip = bpy.context.selected_sequences[0]
intermediate_strip.frame_start = strip.frame_start
# intermediate_strip.frame_offset_start = int(trim_frame)
intermediate_strip.frame_final_duration = 1
1 year ago
temp_strip = strip = get_render_strip(
self, context, intermediate_strip
)
if intermediate_strip is not None:
delete_strip(intermediate_strip)
else:
temp_strip = strip = get_render_strip(self, context, strip)
else:
temp_strip = strip = get_render_strip(self, context, strip)
if strip.type == "TEXT":
if strip.text:
print("\n" + str(count + 1) + "/" + str(len(strips)))
print("Prompt: " + strip.text + ", " + prompt)
print("Negative Prompt: " + negative_prompt)
scene.generate_movie_prompt = strip.text + ", " + prompt
scene.frame_current = strip.frame_final_start
if type == "movie":
sequencer.generate_movie()
if type == "audio":
sequencer.generate_audio()
if type == "image":
sequencer.generate_image()
context.scene.generate_movie_prompt = prompt
scene.generate_movie_negative_prompt = negative_prompt
context.scene.movie_use_random = use_random
context.scene.movie_num_seed = seed
scene.generate_movie_prompt = prompt
scene.generate_movie_negative_prompt = negative_prompt
if use_strip_data:
scene.movie_use_random = use_random
scene.movie_num_seed = seed
if strip.type == "IMAGE":
strip_dirname = os.path.dirname(strip.directory)
image_path = bpy.path.abspath(
os.path.join(strip_dirname, strip.elements[0].filename)
)
bpy.types.Scene.image_path = image_path
if strip.name:
strip_prompt = os.path.splitext(strip.name)[0]
seed_nr = extract_numbers(str(strip_prompt))
if seed_nr:
file_seed = int(seed_nr)
if file_seed and use_strip_data:
strip_prompt = strip_prompt.replace(
str(file_seed) + "_", ""
)
context.scene.movie_use_random = False
context.scene.movie_num_seed = file_seed
if use_strip_data:
styled_prompt = style_prompt(strip_prompt + ", " + prompt)[0]
styled_negative_prompt = style_prompt(
strip_prompt + ", " + prompt
)[1]
else:
styled_prompt = style_prompt(prompt)[0]
styled_negative_prompt = style_prompt(prompt)[1]
print("\n" + str(count + 1) + "/" + str(len(strips)))
if type != "text":
print("Prompt: " + styled_prompt)
print("Negative Prompt: " + styled_negative_prompt)
scene.generate_movie_prompt = styled_prompt
scene.generate_movie_negative_prompt = styled_negative_prompt
scene.frame_current = strip.frame_final_start
context.scene.sequence_editor.active_strip = strip
if type == "movie":
sequencer.generate_movie()
if type == "audio":
sequencer.generate_audio()
if type == "image":
sequencer.generate_image()
if type == "text":
sequencer.generate_text()
scene.generate_movie_prompt = prompt
scene.generate_movie_negative_prompt = negative_prompt
if use_strip_data:
scene.movie_use_random = use_random
scene.movie_num_seed = seed
bpy.types.Scene.image_path = ""
if strip.type == "MOVIE":
movie_path = bpy.path.abspath(strip.filepath)
bpy.types.Scene.movie_path = movie_path
if strip.name:
strip_prompt = os.path.splitext(strip.name)[0]
seed_nr = extract_numbers(str(strip_prompt))
if seed_nr:
file_seed = int(seed_nr)
if file_seed and use_strip_data:
strip_prompt = strip_prompt.replace(
str(file_seed) + "_", ""
)
context.scene.movie_use_random = False
context.scene.movie_num_seed = file_seed
if use_strip_data:
styled_prompt = style_prompt(strip_prompt + ", " + prompt)[0]
styled_negative_prompt = style_prompt(
strip_prompt + ", " + prompt
)[1]
else:
styled_prompt = style_prompt(prompt)[0]
styled_negative_prompt = style_prompt(prompt)[1]
print("\n" + str(count + 1) + "/" + str(len(strips)))
if type != "text":
print("Prompt: " + styled_prompt)
print("Negative Prompt: " + styled_negative_prompt)
scene.generate_movie_prompt = styled_prompt
scene.generate_movie_negative_prompt = styled_negative_prompt
scene.frame_current = strip.frame_final_start
context.scene.sequence_editor.active_strip = strip
if type == "movie":
sequencer.generate_movie()
if type == "audio":
sequencer.generate_audio()
if type == "image":
sequencer.generate_image()
if type == "text":
sequencer.generate_text()
scene.generate_movie_prompt = prompt
scene.generate_movie_negative_prompt = negative_prompt
if use_strip_data:
scene.movie_use_random = use_random
scene.movie_num_seed = seed
if temp_strip is not None:
delete_strip(temp_strip)
bpy.types.Scene.movie_path = ""
scene.generate_movie_prompt = prompt
scene.generate_movie_negative_prompt = negative_prompt
context.scene.movie_use_random = use_random
context.scene.movie_num_seed = seed
scene.frame_current = current_frame
scene.generate_movie_prompt = prompt
scene.generate_movie_negative_prompt = negative_prompt
context.scene.movie_use_random = use_random
context.scene.movie_num_seed = seed
context.scene.sequence_editor.active_strip = active_strip
addon_prefs.playsound = play_sound
bpy.ops.renderreminder.play_notification()
print("Processing finished.")
return {"FINISHED"}
classes = (
GeneratorAddonPreferences,
SEQUENCER_OT_generate_movie,
SEQUENCER_OT_generate_audio,
SEQUENCER_OT_generate_image,
SEQUENCER_OT_generate_text,
SEQUENCER_PT_pallaidium_panel,
GENERATOR_OT_sound_notification,
SEQUENCER_OT_strip_to_generatorAI,
LORABrowserFileItem,
LORA_OT_RefreshFiles,
LORABROWSER_UL_files,
GENERATOR_OT_install,
GENERATOR_OT_uninstall,
)
def register():
bpy.types.Scene.generate_movie_prompt = bpy.props.StringProperty(
name="generate_movie_prompt",
default="",
options={"TEXTEDIT_UPDATE"},
)
bpy.types.Scene.generate_movie_negative_prompt = bpy.props.StringProperty(
name="generate_movie_negative_prompt",
default="",
options={"TEXTEDIT_UPDATE"},
)
bpy.types.Scene.generate_audio_prompt = bpy.props.StringProperty(
name="generate_audio_prompt", default=""
)
bpy.types.Scene.generate_movie_x = bpy.props.IntProperty(
name="generate_movie_x",
default=1024,
step=64,
min=256,
max=1536,
)
bpy.types.Scene.generate_movie_y = bpy.props.IntProperty(
name="generate_movie_y",
default=512,
step=64,
min=256,
max=1536,
)
# The number of frames to be generated.
bpy.types.Scene.generate_movie_frames = bpy.props.IntProperty(
name="generate_movie_frames",
default=6,
min=1,
max=125,
)
# The number of denoising steps. More denoising steps usually lead to a higher quality audio at the expense of slower inference.
bpy.types.Scene.movie_num_inference_steps = bpy.props.IntProperty(
name="movie_num_inference_steps",
default=25,
min=1,
max=100,
)
# The number of videos to generate.
bpy.types.Scene.movie_num_batch = bpy.props.IntProperty(
name="movie_num_batch",
default=1,
min=1,
max=100,
)
# The seed number.
bpy.types.Scene.movie_num_seed = bpy.props.IntProperty(
name="movie_num_seed",
default=1,
min=-2147483647,
max=2147483647,
)
# The seed number.
bpy.types.Scene.movie_use_random = bpy.props.BoolProperty(
name="movie_use_random",
default=1,
)
# The guidance number.
bpy.types.Scene.movie_num_guidance = bpy.props.FloatProperty(
name="movie_num_guidance",
default=4.0,
min=0,
max=100,
)
# The frame audio duration.
bpy.types.Scene.audio_length_in_f = bpy.props.IntProperty(
name="audio_length_in_f",
default=80,
min=1,
max=10000,
)
bpy.types.Scene.generatorai_typeselect = bpy.props.EnumProperty(
name="Sound",
items=[
("movie", "Video", "Generate Video"),
("image", "Image", "Generate Image"),
("audio", "Audio", "Generate Audio"),
("text", "Text", "Generate Text"),
],
default="image",
update=output_strips_updated,
)
bpy.types.Scene.speakers = bpy.props.EnumProperty(
name="Speakers",
items=[
("speaker_0", "Speaker 0", ""),
("speaker_1", "Speaker 1", ""),
("speaker_2", "Speaker 2", ""),
("speaker_3", "Speaker 3", ""),
("speaker_4", "Speaker 4", ""),
("speaker_5", "Speaker 5", ""),
("speaker_6", "Speaker 6", ""),
("speaker_7", "Speaker 7", ""),
("speaker_8", "Speaker 8", ""),
("speaker_9", "Speaker 9", ""),
],
default="speaker_3",
)
bpy.types.Scene.languages = bpy.props.EnumProperty(
name="Languages",
items=[
("en", "English", ""),
("de", "German", ""),
("es", "Spanish", ""),
("fr", "French", ""),
("hi", "Hindi", ""),
("it", "Italian", ""),
("ja", "Japanese", ""),
("ko", "Korean", ""),
("pl", "Polish", ""),
("pt", "Portuguese", ""),
("ru", "Russian", ""),
("tr", "Turkish", ""),
("zh", "Chinese, simplified", ""),
],
default="en",
)
# Inpaint
bpy.types.Scene.inpaint_selected_strip = bpy.props.StringProperty(
name="inpaint_selected_strip", default=""
)
# Upscale
bpy.types.Scene.video_to_video = bpy.props.BoolProperty(
name="video_to_video",
default=0,
)
# Refine SD
bpy.types.Scene.refine_sd = bpy.props.BoolProperty(
name="refine_sd",
default=1,
)
# movie path
bpy.types.Scene.movie_path = bpy.props.StringProperty(name="movie_path", default="")
bpy.types.Scene.movie_path = ""
# image path
bpy.types.Scene.image_path = bpy.props.StringProperty(name="image_path", default="")
bpy.types.Scene.image_path = ""
bpy.types.Scene.input_strips = bpy.props.EnumProperty(
items=[
("generate", "No Input", "No Input"),
("input_strips", "Strips", "Selected Strips"),
],
default="generate",
update=input_strips_updated,
)
bpy.types.Scene.image_power = bpy.props.FloatProperty(
name="image_power",
default=0.50,
min=0.05,
max=0.82,
)
styles_array = load_styles(
os.path.dirname(os.path.abspath(__file__)) + "/styles.json"
)
if styles_array:
bpy.types.Scene.generatorai_styles = bpy.props.EnumProperty(
name="Generator AI Styles",
items=[("no_style", "No Style", "No Style")] + styles_array,
default="no_style",
)
bpy.types.Scene.openpose_use_bones = bpy.props.BoolProperty(
name="openpose_use_bones",
default=0,
)
bpy.types.Scene.use_scribble_image = bpy.props.BoolProperty(
name="use_scribble_image",
default=0,
)
# Blip
bpy.types.Scene.blip_cond_subject = bpy.props.StringProperty(
name="blip_cond_subject",
default="",
)
bpy.types.Scene.blip_tgt_subject = bpy.props.StringProperty(
name="blip_tgt_subject",
default="",
)
bpy.types.Scene.blip_subject_image = bpy.props.StringProperty(
name="blip_subject_image", default=""
)
bpy.types.Scene.use_freeU = bpy.props.BoolProperty(
name="use_freeU",
default=0,
)
bpy.types.Scene.use_lcm = bpy.props.BoolProperty(
name="use_lcm",
default=0,
)
# SVD decode chunck
bpy.types.Scene.svd_decode_chunk_size = bpy.props.IntProperty(
name="svd_decode_chunk_size",
default=2,
min=1,
max=100,
)
# SVD motion_bucket_id
bpy.types.Scene.svd_motion_bucket_id = bpy.props.IntProperty(
name="svd_motion_bucket_id",
default=30,
min=1,
max=512,
)
for cls in classes:
bpy.utils.register_class(cls)
# LoRA
bpy.types.Scene.lora_files = bpy.props.CollectionProperty(type=LORABrowserFileItem)
bpy.types.Scene.lora_files_index = bpy.props.IntProperty(name="Index", default=0)
bpy.types.Scene.lora_folder = bpy.props.StringProperty(
name="Folder",
description="Select a folder",
1 year ago
subtype="DIR_PATH",
default="",
update=update_folder_callback,
)
def unregister():
for cls in classes:
bpy.utils.unregister_class(cls)
del bpy.types.Scene.generate_movie_prompt
del bpy.types.Scene.generate_audio_prompt
del bpy.types.Scene.generate_movie_x
del bpy.types.Scene.generate_movie_y
del bpy.types.Scene.movie_num_inference_steps
del bpy.types.Scene.movie_num_batch
del bpy.types.Scene.movie_num_seed
del bpy.types.Scene.movie_use_random
del bpy.types.Scene.movie_num_guidance
del bpy.types.Scene.generatorai_typeselect
del bpy.types.Scene.movie_path
del bpy.types.Scene.image_path
del bpy.types.Scene.refine_sd
del bpy.types.Scene.generatorai_styles
del bpy.types.Scene.inpaint_selected_strip
del bpy.types.Scene.openpose_use_bones
del bpy.types.Scene.use_scribble_image
del bpy.types.Scene.blip_cond_subject
del bpy.types.Scene.blip_tgt_subject
del bpy.types.Scene.blip_subject_image
del bpy.types.Scene.lora_files
del bpy.types.Scene.lora_files_index
if __name__ == "__main__":
unregister()
register()