|
|
|
from typing import Any, Dict, Optional, Tuple
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.fft as fft
|
|
|
|
from diffusers.utils import is_torch_version
|
|
|
|
from diffusers.models.unet_2d_condition import logger as logger2d
|
|
|
|
from diffusers.models.unet_3d_condition import logger as logger3d
|
|
|
|
|
|
|
|
|
|
|
|
def isinstance_str(x: object, cls_name: str):
|
|
|
|
"""
|
|
|
|
Checks whether x has any class *named* cls_name in its ancestry.
|
|
|
|
Doesn't require access to the class's implementation.
|
|
|
|
|
|
|
|
Useful for patching!
|
|
|
|
"""
|
|
|
|
|
|
|
|
for _cls in x.__class__.__mro__:
|
|
|
|
if _cls.__name__ == cls_name:
|
|
|
|
return True
|
|
|
|
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
def Fourier_filter(x_in, threshold, scale):
|
|
|
|
"""
|
|
|
|
Updated Fourier filter based on:
|
|
|
|
https://github.com/huggingface/diffusers/pull/5164#issuecomment-1732638706
|
|
|
|
"""
|
|
|
|
|
|
|
|
x = x_in
|
|
|
|
B, C, H, W = x.shape
|
|
|
|
|
|
|
|
# Non-power of 2 images must be float32
|
|
|
|
if (W & (W - 1)) != 0 or (H & (H - 1)) != 0:
|
|
|
|
x = x.to(dtype=torch.float32)
|
|
|
|
|
|
|
|
# FFT
|
|
|
|
x_freq = fft.fftn(x, dim=(-2, -1))
|
|
|
|
x_freq = fft.fftshift(x_freq, dim=(-2, -1))
|
|
|
|
|
|
|
|
B, C, H, W = x_freq.shape
|
|
|
|
mask = torch.ones((B, C, H, W), device=x.device)
|
|
|
|
|
|
|
|
crow, ccol = H // 2, W // 2
|
|
|
|
mask[..., crow - threshold : crow + threshold, ccol - threshold : ccol + threshold] = scale
|
|
|
|
x_freq = x_freq * mask
|
|
|
|
|
|
|
|
# IFFT
|
|
|
|
x_freq = fft.ifftshift(x_freq, dim=(-2, -1))
|
|
|
|
x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real
|
|
|
|
|
|
|
|
return x_filtered.to(dtype=x_in.dtype)
|
|
|
|
|
|
|
|
|
|
|
|
def register_upblock2d(model):
|
|
|
|
"""
|
|
|
|
Register UpBlock2D for UNet2DCondition.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def up_forward(self):
|
|
|
|
def forward(
|
|
|
|
hidden_states,
|
|
|
|
res_hidden_states_tuple,
|
|
|
|
temb=None,
|
|
|
|
upsample_size=None,
|
|
|
|
scale: float = 1.0
|
|
|
|
):
|
|
|
|
logger2d.debug(f"in upblock2d, hidden states shape: {hidden_states.shape}")
|
|
|
|
|
|
|
|
for resnet in self.resnets:
|
|
|
|
# pop res hidden states
|
|
|
|
res_hidden_states = res_hidden_states_tuple[-1]
|
|
|
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
|
|
|
|
|
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
|
|
|
|
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
|
|
|
|
def create_custom_forward(module):
|
|
|
|
def custom_forward(*inputs):
|
|
|
|
return module(*inputs)
|
|
|
|
|
|
|
|
return custom_forward
|
|
|
|
|
|
|
|
if is_torch_version(">=", "1.11.0"):
|
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
|
|
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
|
|
create_custom_forward(resnet), hidden_states, temb
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
hidden_states = resnet(hidden_states, temb, scale=scale)
|
|
|
|
|
|
|
|
if self.upsamplers is not None:
|
|
|
|
for upsampler in self.upsamplers:
|
|
|
|
hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
|
|
|
|
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
return forward
|
|
|
|
|
|
|
|
for i, upsample_block in enumerate(model.unet.up_blocks):
|
|
|
|
if isinstance_str(upsample_block, "UpBlock2D"):
|
|
|
|
upsample_block.forward = up_forward(upsample_block)
|
|
|
|
|
|
|
|
|
|
|
|
def register_free_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2):
|
|
|
|
"""
|
|
|
|
Register UpBlock2D with FreeU for UNet2DCondition.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def up_forward(self):
|
|
|
|
def forward(
|
|
|
|
hidden_states,
|
|
|
|
res_hidden_states_tuple,
|
|
|
|
temb=None,
|
|
|
|
upsample_size=None,
|
|
|
|
scale: float = 1.0
|
|
|
|
):
|
|
|
|
logger2d.debug(f"in free upblock2d, hidden states shape: {hidden_states.shape}")
|
|
|
|
|
|
|
|
for resnet in self.resnets:
|
|
|
|
# pop res hidden states
|
|
|
|
res_hidden_states = res_hidden_states_tuple[-1]
|
|
|
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
|
|
|
|
|
|
|
# --------------- FreeU code -----------------------
|
|
|
|
# Only operate on the first two stages
|
|
|
|
if hidden_states.shape[1] == 1280:
|
|
|
|
hidden_states[:,:640] = hidden_states[:,:640] * self.b1
|
|
|
|
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1)
|
|
|
|
if hidden_states.shape[1] == 640:
|
|
|
|
hidden_states[:,:320] = hidden_states[:,:320] * self.b2
|
|
|
|
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2)
|
|
|
|
# ---------------------------------------------------------
|
|
|
|
|
|
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
|
|
|
|
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
|
|
|
|
def create_custom_forward(module):
|
|
|
|
def custom_forward(*inputs):
|
|
|
|
return module(*inputs)
|
|
|
|
|
|
|
|
return custom_forward
|
|
|
|
|
|
|
|
if is_torch_version(">=", "1.11.0"):
|
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
|
|
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
|
|
create_custom_forward(resnet), hidden_states, temb
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
hidden_states = resnet(hidden_states, temb, scale=scale)
|
|
|
|
|
|
|
|
if self.upsamplers is not None:
|
|
|
|
for upsampler in self.upsamplers:
|
|
|
|
hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
|
|
|
|
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
return forward
|
|
|
|
|
|
|
|
for i, upsample_block in enumerate(model.unet.up_blocks):
|
|
|
|
if isinstance_str(upsample_block, "UpBlock2D"):
|
|
|
|
upsample_block.forward = up_forward(upsample_block)
|
|
|
|
setattr(upsample_block, 'b1', b1)
|
|
|
|
setattr(upsample_block, 'b2', b2)
|
|
|
|
setattr(upsample_block, 's1', s1)
|
|
|
|
setattr(upsample_block, 's2', s2)
|
|
|
|
|
|
|
|
|
|
|
|
def register_crossattn_upblock2d(model):
|
|
|
|
"""
|
|
|
|
Register CrossAttn UpBlock2D for UNet2DCondition.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def up_forward(self):
|
|
|
|
def forward(
|
|
|
|
hidden_states: torch.FloatTensor,
|
|
|
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
|
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
|
upsample_size: Optional[int] = None,
|
|
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
):
|
|
|
|
logger2d.debug(f"in crossatten upblock2d, hidden states shape: {hidden_states.shape}")
|
|
|
|
|
|
|
|
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
|
|
|
|
|
|
|
for resnet, attn in zip(self.resnets, self.attentions):
|
|
|
|
# pop res hidden states
|
|
|
|
res_hidden_states = res_hidden_states_tuple[-1]
|
|
|
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
|
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
|
|
|
|
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
|
|
def custom_forward(*inputs):
|
|
|
|
if return_dict is not None:
|
|
|
|
return module(*inputs, return_dict=return_dict)
|
|
|
|
else:
|
|
|
|
return module(*inputs)
|
|
|
|
|
|
|
|
return custom_forward
|
|
|
|
|
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
|
|
create_custom_forward(resnet),
|
|
|
|
hidden_states,
|
|
|
|
temb,
|
|
|
|
**ckpt_kwargs,
|
|
|
|
)
|
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
|
|
create_custom_forward(attn, return_dict=False),
|
|
|
|
hidden_states,
|
|
|
|
encoder_hidden_states,
|
|
|
|
None, # timestep
|
|
|
|
None, # class_labels
|
|
|
|
cross_attention_kwargs,
|
|
|
|
attention_mask,
|
|
|
|
encoder_attention_mask,
|
|
|
|
**ckpt_kwargs,
|
|
|
|
)[0]
|
|
|
|
else:
|
|
|
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
|
|
|
hidden_states = attn(
|
|
|
|
hidden_states,
|
|
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
|
|
return_dict=False,
|
|
|
|
)[0]
|
|
|
|
|
|
|
|
if self.upsamplers is not None:
|
|
|
|
for upsampler in self.upsamplers:
|
|
|
|
hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale)
|
|
|
|
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
return forward
|
|
|
|
|
|
|
|
for i, upsample_block in enumerate(model.unet.up_blocks):
|
|
|
|
if isinstance_str(upsample_block, "CrossAttnUpBlock2D"):
|
|
|
|
upsample_block.forward = up_forward(upsample_block)
|
|
|
|
|
|
|
|
|
|
|
|
def register_free_crossattn_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2):
|
|
|
|
"""
|
|
|
|
Register CrossAttn UpBlock2D with FreeU for UNet2DCondition.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def up_forward(self):
|
|
|
|
def forward(
|
|
|
|
hidden_states: torch.FloatTensor,
|
|
|
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
|
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
|
upsample_size: Optional[int] = None,
|
|
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
):
|
|
|
|
logger2d.debug(f"in free crossatten upblock2d, hidden states shape: {hidden_states.shape}")
|
|
|
|
|
|
|
|
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
|
|
|
|
|
|
|
for resnet, attn in zip(self.resnets, self.attentions):
|
|
|
|
# pop res hidden states
|
|
|
|
res_hidden_states = res_hidden_states_tuple[-1]
|
|
|
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
|
|
|
|
|
|
|
# --------------- FreeU code -----------------------
|
|
|
|
# Only operate on the first two stages
|
|
|
|
if hidden_states.shape[1] == 1280:
|
|
|
|
hidden_states[:,:640] = hidden_states[:,:640] * self.b1
|
|
|
|
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1)
|
|
|
|
if hidden_states.shape[1] == 640:
|
|
|
|
hidden_states[:,:320] = hidden_states[:,:320] * self.b2
|
|
|
|
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2)
|
|
|
|
# ---------------------------------------------------------
|
|
|
|
|
|
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
|
|
|
|
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
|
|
def custom_forward(*inputs):
|
|
|
|
if return_dict is not None:
|
|
|
|
return module(*inputs, return_dict=return_dict)
|
|
|
|
else:
|
|
|
|
return module(*inputs)
|
|
|
|
|
|
|
|
return custom_forward
|
|
|
|
|
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
|
|
create_custom_forward(resnet),
|
|
|
|
hidden_states,
|
|
|
|
temb,
|
|
|
|
**ckpt_kwargs,
|
|
|
|
)
|
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
|
|
create_custom_forward(attn, return_dict=False),
|
|
|
|
hidden_states,
|
|
|
|
encoder_hidden_states,
|
|
|
|
None, # timestep
|
|
|
|
None, # class_labels
|
|
|
|
cross_attention_kwargs,
|
|
|
|
attention_mask,
|
|
|
|
encoder_attention_mask,
|
|
|
|
**ckpt_kwargs,
|
|
|
|
)[0]
|
|
|
|
else:
|
|
|
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
|
|
|
hidden_states = attn(
|
|
|
|
hidden_states,
|
|
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
|
|
return_dict=False,
|
|
|
|
)[0]
|
|
|
|
|
|
|
|
if self.upsamplers is not None:
|
|
|
|
for upsampler in self.upsamplers:
|
|
|
|
hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale)
|
|
|
|
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
return forward
|
|
|
|
|
|
|
|
for i, upsample_block in enumerate(model.unet.up_blocks):
|
|
|
|
if isinstance_str(upsample_block, "CrossAttnUpBlock2D"):
|
|
|
|
upsample_block.forward = up_forward(upsample_block)
|
|
|
|
setattr(upsample_block, 'b1', b1)
|
|
|
|
setattr(upsample_block, 'b2', b2)
|
|
|
|
setattr(upsample_block, 's1', s1)
|
|
|
|
setattr(upsample_block, 's2', s2)
|
|
|
|
|
|
|
|
|
|
|
|
def register_upblock3d(model):
|
|
|
|
"""
|
|
|
|
Register UpBlock3D for UNet3DCondition.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def up_forward(self):
|
|
|
|
def forward(
|
|
|
|
hidden_states,
|
|
|
|
res_hidden_states_tuple,
|
|
|
|
temb=None,
|
|
|
|
upsample_size=None,
|
|
|
|
num_frames=1
|
|
|
|
):
|
|
|
|
|
|
|
|
logger3d.debug(f"in upblock3d, hidden states shape: {hidden_states.shape}")
|
|
|
|
|
|
|
|
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
|
|
|
|
# pop res hidden states
|
|
|
|
res_hidden_states = res_hidden_states_tuple[-1]
|
|
|
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
|
|
|
|
|
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
|
|
|
|
|
|
hidden_states = resnet(hidden_states, temb)
|
|
|
|
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
|
|
|
|
|
|
|
|
if self.upsamplers is not None:
|
|
|
|
for upsampler in self.upsamplers:
|
|
|
|
hidden_states = upsampler(hidden_states, upsample_size)
|
|
|
|
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
return forward
|
|
|
|
|
|
|
|
for i, upsample_block in enumerate(model.unet.up_blocks):
|
|
|
|
if isinstance_str(upsample_block, "UpBlock3D"):
|
|
|
|
upsample_block.forward = up_forward(upsample_block)
|
|
|
|
|
|
|
|
|
|
|
|
def register_free_upblock3d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2):
|
|
|
|
"""
|
|
|
|
Register UpBlock3D with FreeU for UNet3DCondition.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def up_forward(self):
|
|
|
|
def forward(
|
|
|
|
hidden_states,
|
|
|
|
res_hidden_states_tuple,
|
|
|
|
temb=None,
|
|
|
|
upsample_size=None,
|
|
|
|
num_frames=1
|
|
|
|
):
|
|
|
|
|
|
|
|
logger3d.debug(f"in free upblock3d, hidden states shape: {hidden_states.shape}")
|
|
|
|
|
|
|
|
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
|
|
|
|
# pop res hidden states
|
|
|
|
res_hidden_states = res_hidden_states_tuple[-1]
|
|
|
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
|
|
|
|
|
|
|
# --------------- FreeU code -----------------------
|
|
|
|
# Only operate on the first two stages
|
|
|
|
if hidden_states.shape[1] == 1280:
|
|
|
|
hidden_states[:,:640] = hidden_states[:,:640] * self.b1
|
|
|
|
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1)
|
|
|
|
if hidden_states.shape[1] == 640:
|
|
|
|
hidden_states[:,:320] = hidden_states[:,:320] * self.b2
|
|
|
|
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2)
|
|
|
|
# ---------------------------------------------------------
|
|
|
|
|
|
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
|
|
|
|
|
|
hidden_states = resnet(hidden_states, temb)
|
|
|
|
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
|
|
|
|
|
|
|
|
if self.upsamplers is not None:
|
|
|
|
for upsampler in self.upsamplers:
|
|
|
|
hidden_states = upsampler(hidden_states, upsample_size)
|
|
|
|
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
return forward
|
|
|
|
|
|
|
|
for i, upsample_block in enumerate(model.unet.up_blocks):
|
|
|
|
if isinstance_str(upsample_block, "UpBlock3D"):
|
|
|
|
upsample_block.forward = up_forward(upsample_block)
|
|
|
|
setattr(upsample_block, 'b1', b1)
|
|
|
|
setattr(upsample_block, 'b2', b2)
|
|
|
|
setattr(upsample_block, 's1', s1)
|
|
|
|
setattr(upsample_block, 's2', s2)
|
|
|
|
|
|
|
|
|
|
|
|
def register_crossattn_upblock3d(model):
|
|
|
|
"""
|
|
|
|
Register CrossAttn UpBlock3D for UNet3DCondition.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def up_forward(self):
|
|
|
|
def forward(
|
|
|
|
hidden_states: torch.FloatTensor,
|
|
|
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
|
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
|
upsample_size: Optional[int] = None,
|
|
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
num_frames: int = 1
|
|
|
|
):
|
|
|
|
logger3d.debug(f"in crossatten upblock3d, hidden states shape: {hidden_states.shape}")
|
|
|
|
|
|
|
|
for resnet, temp_conv, attn, temp_attn in zip(
|
|
|
|
self.resnets, self.temp_convs, self.attentions, self.temp_attentions
|
|
|
|
):
|
|
|
|
# pop res hidden states
|
|
|
|
res_hidden_states = res_hidden_states_tuple[-1]
|
|
|
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
|
|
|
|
|
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
|
|
|
|
|
|
hidden_states = resnet(hidden_states, temb)
|
|
|
|
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
|
|
|
|
hidden_states = attn(
|
|
|
|
hidden_states,
|
|
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
|
|
return_dict=False,
|
|
|
|
)[0]
|
|
|
|
hidden_states = temp_attn(
|
|
|
|
hidden_states, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs, return_dict=False
|
|
|
|
)[0]
|
|
|
|
|
|
|
|
if self.upsamplers is not None:
|
|
|
|
for upsampler in self.upsamplers:
|
|
|
|
hidden_states = upsampler(hidden_states, upsample_size)
|
|
|
|
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
return forward
|
|
|
|
|
|
|
|
for i, upsample_block in enumerate(model.unet.up_blocks):
|
|
|
|
if isinstance_str(upsample_block, "CrossAttnUpBlock3D"):
|
|
|
|
upsample_block.forward = up_forward(upsample_block)
|
|
|
|
|
|
|
|
|
|
|
|
def register_free_crossattn_upblock3d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2):
|
|
|
|
"""
|
|
|
|
Register CrossAttn UpBlock3D with FreeU for UNet3DCondition.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def up_forward(self):
|
|
|
|
def forward(
|
|
|
|
hidden_states: torch.FloatTensor,
|
|
|
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
|
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
|
upsample_size: Optional[int] = None,
|
|
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
num_frames: int = 1
|
|
|
|
):
|
|
|
|
logger3d.debug(f"in free crossatten upblock3d, hidden states shape: {hidden_states.shape}")
|
|
|
|
|
|
|
|
for resnet, temp_conv, attn, temp_attn in zip(
|
|
|
|
self.resnets, self.temp_convs, self.attentions, self.temp_attentions
|
|
|
|
):
|
|
|
|
# pop res hidden states
|
|
|
|
res_hidden_states = res_hidden_states_tuple[-1]
|
|
|
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
|
|
|
|
|
|
|
# --------------- FreeU code -----------------------
|
|
|
|
# Only operate on the first two stages
|
|
|
|
if hidden_states.shape[1] == 1280:
|
|
|
|
hidden_states[:,:640] = hidden_states[:,:640] * self.b1
|
|
|
|
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1)
|
|
|
|
if hidden_states.shape[1] == 640:
|
|
|
|
hidden_states[:,:320] = hidden_states[:,:320] * self.b2
|
|
|
|
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2)
|
|
|
|
# ---------------------------------------------------------
|
|
|
|
|
|
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
|
|
|
|
|
|
hidden_states = resnet(hidden_states, temb)
|
|
|
|
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
|
|
|
|
hidden_states = attn(
|
|
|
|
hidden_states,
|
|
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
|
|
return_dict=False,
|
|
|
|
)[0]
|
|
|
|
hidden_states = temp_attn(
|
|
|
|
hidden_states, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs, return_dict=False
|
|
|
|
)[0]
|
|
|
|
|
|
|
|
if self.upsamplers is not None:
|
|
|
|
for upsampler in self.upsamplers:
|
|
|
|
hidden_states = upsampler(hidden_states, upsample_size)
|
|
|
|
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
return forward
|
|
|
|
|
|
|
|
for i, upsample_block in enumerate(model.unet.up_blocks):
|
|
|
|
if isinstance_str(upsample_block, "CrossAttnUpBlock3D"):
|
|
|
|
upsample_block.forward = up_forward(upsample_block)
|
|
|
|
setattr(upsample_block, 'b1', b1)
|
|
|
|
setattr(upsample_block, 'b2', b2)
|
|
|
|
setattr(upsample_block, 's1', s1)
|
|
|
|
setattr(upsample_block, 's2', s2)
|