You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1636 lines
52 KiB
1636 lines
52 KiB
# pylint: skip-file |
|
"""Original MAT project is copyright of fenglingwb: https://github.com/fenglinglwb/MAT |
|
Code used for this implementation of MAT is modified from lama-cleaner, |
|
copyright of Sanster: https://github.com/fenglinglwb/MAT""" |
|
|
|
import random |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
|
|
from .mat.utils import ( |
|
Conv2dLayer, |
|
FullyConnectedLayer, |
|
activation_funcs, |
|
bias_act, |
|
conv2d_resample, |
|
normalize_2nd_moment, |
|
setup_filter, |
|
to_2tuple, |
|
upsample2d, |
|
) |
|
|
|
|
|
class ModulatedConv2d(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, # Number of input channels. |
|
out_channels, # Number of output channels. |
|
kernel_size, # Width and height of the convolution kernel. |
|
style_dim, # dimension of the style code |
|
demodulate=True, # perfrom demodulation |
|
up=1, # Integer upsampling factor. |
|
down=1, # Integer downsampling factor. |
|
resample_filter=[ |
|
1, |
|
3, |
|
3, |
|
1, |
|
], # Low-pass filter to apply when resampling activations. |
|
conv_clamp=None, # Clamp the output to +-X, None = disable clamping. |
|
): |
|
super().__init__() |
|
self.demodulate = demodulate |
|
|
|
self.weight = torch.nn.Parameter( |
|
torch.randn([1, out_channels, in_channels, kernel_size, kernel_size]) |
|
) |
|
self.out_channels = out_channels |
|
self.kernel_size = kernel_size |
|
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size**2)) |
|
self.padding = self.kernel_size // 2 |
|
self.up = up |
|
self.down = down |
|
self.register_buffer("resample_filter", setup_filter(resample_filter)) |
|
self.conv_clamp = conv_clamp |
|
|
|
self.affine = FullyConnectedLayer(style_dim, in_channels, bias_init=1) |
|
|
|
def forward(self, x, style): |
|
batch, in_channels, height, width = x.shape |
|
style = self.affine(style).view(batch, 1, in_channels, 1, 1).to(x.device) |
|
weight = self.weight.to(x.device) * self.weight_gain * style |
|
|
|
if self.demodulate: |
|
decoefs = (weight.pow(2).sum(dim=[2, 3, 4]) + 1e-8).rsqrt() |
|
weight = weight * decoefs.view(batch, self.out_channels, 1, 1, 1) |
|
|
|
weight = weight.view( |
|
batch * self.out_channels, in_channels, self.kernel_size, self.kernel_size |
|
) |
|
x = x.view(1, batch * in_channels, height, width) |
|
x = conv2d_resample( |
|
x=x, |
|
w=weight, |
|
f=self.resample_filter, |
|
up=self.up, |
|
down=self.down, |
|
padding=self.padding, |
|
groups=batch, |
|
) |
|
out = x.view(batch, self.out_channels, *x.shape[2:]) |
|
|
|
return out |
|
|
|
|
|
class StyleConv(torch.nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, # Number of input channels. |
|
out_channels, # Number of output channels. |
|
style_dim, # Intermediate latent (W) dimensionality. |
|
resolution, # Resolution of this layer. |
|
kernel_size=3, # Convolution kernel size. |
|
up=1, # Integer upsampling factor. |
|
use_noise=False, # Enable noise input? |
|
activation="lrelu", # Activation function: 'relu', 'lrelu', etc. |
|
resample_filter=[ |
|
1, |
|
3, |
|
3, |
|
1, |
|
], # Low-pass filter to apply when resampling activations. |
|
conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping. |
|
demodulate=True, # perform demodulation |
|
): |
|
super().__init__() |
|
|
|
self.conv = ModulatedConv2d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
style_dim=style_dim, |
|
demodulate=demodulate, |
|
up=up, |
|
resample_filter=resample_filter, |
|
conv_clamp=conv_clamp, |
|
) |
|
|
|
self.use_noise = use_noise |
|
self.resolution = resolution |
|
if use_noise: |
|
self.register_buffer("noise_const", torch.randn([resolution, resolution])) |
|
self.noise_strength = torch.nn.Parameter(torch.zeros([])) |
|
|
|
self.bias = torch.nn.Parameter(torch.zeros([out_channels])) |
|
self.activation = activation |
|
self.act_gain = activation_funcs[activation].def_gain |
|
self.conv_clamp = conv_clamp |
|
|
|
def forward(self, x, style, noise_mode="random", gain=1): |
|
x = self.conv(x, style) |
|
|
|
assert noise_mode in ["random", "const", "none"] |
|
|
|
if self.use_noise: |
|
if noise_mode == "random": |
|
xh, xw = x.size()[-2:] |
|
noise = ( |
|
torch.randn([x.shape[0], 1, xh, xw], device=x.device) |
|
* self.noise_strength |
|
) |
|
if noise_mode == "const": |
|
noise = self.noise_const * self.noise_strength |
|
x = x + noise |
|
|
|
act_gain = self.act_gain * gain |
|
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None |
|
out = bias_act( |
|
x, self.bias, act=self.activation, gain=act_gain, clamp=act_clamp |
|
) |
|
|
|
return out |
|
|
|
|
|
class ToRGB(torch.nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
style_dim, |
|
kernel_size=1, |
|
resample_filter=[1, 3, 3, 1], |
|
conv_clamp=None, |
|
demodulate=False, |
|
): |
|
super().__init__() |
|
|
|
self.conv = ModulatedConv2d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
style_dim=style_dim, |
|
demodulate=demodulate, |
|
resample_filter=resample_filter, |
|
conv_clamp=conv_clamp, |
|
) |
|
self.bias = torch.nn.Parameter(torch.zeros([out_channels])) |
|
self.register_buffer("resample_filter", setup_filter(resample_filter)) |
|
self.conv_clamp = conv_clamp |
|
|
|
def forward(self, x, style, skip=None): |
|
x = self.conv(x, style) |
|
out = bias_act(x, self.bias, clamp=self.conv_clamp) |
|
|
|
if skip is not None: |
|
if skip.shape != out.shape: |
|
skip = upsample2d(skip, self.resample_filter) |
|
out = out + skip |
|
|
|
return out |
|
|
|
|
|
def get_style_code(a, b): |
|
return torch.cat([a, b.to(a.device)], dim=1) |
|
|
|
|
|
class DecBlockFirst(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
activation, |
|
style_dim, |
|
use_noise, |
|
demodulate, |
|
img_channels, |
|
): |
|
super().__init__() |
|
self.fc = FullyConnectedLayer( |
|
in_features=in_channels * 2, |
|
out_features=in_channels * 4**2, |
|
activation=activation, |
|
) |
|
self.conv = StyleConv( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
style_dim=style_dim, |
|
resolution=4, |
|
kernel_size=3, |
|
use_noise=use_noise, |
|
activation=activation, |
|
demodulate=demodulate, |
|
) |
|
self.toRGB = ToRGB( |
|
in_channels=out_channels, |
|
out_channels=img_channels, |
|
style_dim=style_dim, |
|
kernel_size=1, |
|
demodulate=False, |
|
) |
|
|
|
def forward(self, x, ws, gs, E_features, noise_mode="random"): |
|
x = self.fc(x).view(x.shape[0], -1, 4, 4) |
|
x = x + E_features[2] |
|
style = get_style_code(ws[:, 0], gs) |
|
x = self.conv(x, style, noise_mode=noise_mode) |
|
style = get_style_code(ws[:, 1], gs) |
|
img = self.toRGB(x, style, skip=None) |
|
|
|
return x, img |
|
|
|
|
|
class MappingNet(torch.nn.Module): |
|
def __init__( |
|
self, |
|
z_dim, # Input latent (Z) dimensionality, 0 = no latent. |
|
c_dim, # Conditioning label (C) dimensionality, 0 = no label. |
|
w_dim, # Intermediate latent (W) dimensionality. |
|
num_ws, # Number of intermediate latents to output, None = do not broadcast. |
|
num_layers=8, # Number of mapping layers. |
|
embed_features=None, # Label embedding dimensionality, None = same as w_dim. |
|
layer_features=None, # Number of intermediate features in the mapping layers, None = same as w_dim. |
|
activation="lrelu", # Activation function: 'relu', 'lrelu', etc. |
|
lr_multiplier=0.01, # Learning rate multiplier for the mapping layers. |
|
w_avg_beta=0.995, # Decay for tracking the moving average of W during training, None = do not track. |
|
): |
|
super().__init__() |
|
self.z_dim = z_dim |
|
self.c_dim = c_dim |
|
self.w_dim = w_dim |
|
self.num_ws = num_ws |
|
self.num_layers = num_layers |
|
self.w_avg_beta = w_avg_beta |
|
|
|
if embed_features is None: |
|
embed_features = w_dim |
|
if c_dim == 0: |
|
embed_features = 0 |
|
if layer_features is None: |
|
layer_features = w_dim |
|
features_list = ( |
|
[z_dim + embed_features] + [layer_features] * (num_layers - 1) + [w_dim] |
|
) |
|
|
|
if c_dim > 0: |
|
self.embed = FullyConnectedLayer(c_dim, embed_features) |
|
for idx in range(num_layers): |
|
in_features = features_list[idx] |
|
out_features = features_list[idx + 1] |
|
layer = FullyConnectedLayer( |
|
in_features, |
|
out_features, |
|
activation=activation, |
|
lr_multiplier=lr_multiplier, |
|
) |
|
setattr(self, f"fc{idx}", layer) |
|
|
|
if num_ws is not None and w_avg_beta is not None: |
|
self.register_buffer("w_avg", torch.zeros([w_dim])) |
|
|
|
def forward( |
|
self, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False |
|
): |
|
# Embed, normalize, and concat inputs. |
|
x = None |
|
with torch.autograd.profiler.record_function("input"): |
|
if self.z_dim > 0: |
|
x = normalize_2nd_moment(z.to(torch.float32)) |
|
if self.c_dim > 0: |
|
y = normalize_2nd_moment(self.embed(c.to(torch.float32))) |
|
x = torch.cat([x, y], dim=1) if x is not None else y |
|
|
|
# Main layers. |
|
for idx in range(self.num_layers): |
|
layer = getattr(self, f"fc{idx}") |
|
x = layer(x) |
|
|
|
# Update moving average of W. |
|
if self.w_avg_beta is not None and self.training and not skip_w_avg_update: |
|
with torch.autograd.profiler.record_function("update_w_avg"): |
|
self.w_avg.copy_( |
|
x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta) |
|
) |
|
|
|
# Broadcast. |
|
if self.num_ws is not None: |
|
with torch.autograd.profiler.record_function("broadcast"): |
|
x = x.unsqueeze(1).repeat([1, self.num_ws, 1]) |
|
|
|
# Apply truncation. |
|
if truncation_psi != 1: |
|
with torch.autograd.profiler.record_function("truncate"): |
|
assert self.w_avg_beta is not None |
|
if self.num_ws is None or truncation_cutoff is None: |
|
x = self.w_avg.lerp(x, truncation_psi) |
|
else: |
|
x[:, :truncation_cutoff] = self.w_avg.lerp( |
|
x[:, :truncation_cutoff], truncation_psi |
|
) |
|
|
|
return x |
|
|
|
|
|
class DisFromRGB(nn.Module): |
|
def __init__( |
|
self, in_channels, out_channels, activation |
|
): # res = 2, ..., resolution_log2 |
|
super().__init__() |
|
self.conv = Conv2dLayer( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=1, |
|
activation=activation, |
|
) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
class DisBlock(nn.Module): |
|
def __init__( |
|
self, in_channels, out_channels, activation |
|
): # res = 2, ..., resolution_log2 |
|
super().__init__() |
|
self.conv0 = Conv2dLayer( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
kernel_size=3, |
|
activation=activation, |
|
) |
|
self.conv1 = Conv2dLayer( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
down=2, |
|
activation=activation, |
|
) |
|
self.skip = Conv2dLayer( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=1, |
|
down=2, |
|
bias=False, |
|
) |
|
|
|
def forward(self, x): |
|
skip = self.skip(x, gain=np.sqrt(0.5)) |
|
x = self.conv0(x) |
|
x = self.conv1(x, gain=np.sqrt(0.5)) |
|
out = skip + x |
|
|
|
return out |
|
|
|
|
|
def nf(stage, channel_base=32768, channel_decay=1.0, channel_max=512): |
|
NF = {512: 64, 256: 128, 128: 256, 64: 512, 32: 512, 16: 512, 8: 512, 4: 512} |
|
return NF[2**stage] |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__( |
|
self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.GELU, |
|
drop=0.0, |
|
): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = FullyConnectedLayer( |
|
in_features=in_features, out_features=hidden_features, activation="lrelu" |
|
) |
|
self.fc2 = FullyConnectedLayer( |
|
in_features=hidden_features, out_features=out_features |
|
) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.fc2(x) |
|
return x |
|
|
|
|
|
def window_partition(x, window_size): |
|
""" |
|
Args: |
|
x: (B, H, W, C) |
|
window_size (int): window size |
|
Returns: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
""" |
|
B, H, W, C = x.shape |
|
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) |
|
windows = ( |
|
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) |
|
) |
|
return windows |
|
|
|
|
|
def window_reverse(windows, window_size: int, H: int, W: int): |
|
""" |
|
Args: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
window_size (int): Window size |
|
H (int): Height of image |
|
W (int): Width of image |
|
Returns: |
|
x: (B, H, W, C) |
|
""" |
|
B = int(windows.shape[0] / (H * W / window_size / window_size)) |
|
# B = windows.shape[0] / (H * W / window_size / window_size) |
|
x = windows.view( |
|
B, H // window_size, W // window_size, window_size, window_size, -1 |
|
) |
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) |
|
return x |
|
|
|
|
|
class Conv2dLayerPartial(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, # Number of input channels. |
|
out_channels, # Number of output channels. |
|
kernel_size, # Width and height of the convolution kernel. |
|
bias=True, # Apply additive bias before the activation function? |
|
activation="linear", # Activation function: 'relu', 'lrelu', etc. |
|
up=1, # Integer upsampling factor. |
|
down=1, # Integer downsampling factor. |
|
resample_filter=[ |
|
1, |
|
3, |
|
3, |
|
1, |
|
], # Low-pass filter to apply when resampling activations. |
|
conv_clamp=None, # Clamp the output to +-X, None = disable clamping. |
|
trainable=True, # Update the weights of this layer during training? |
|
): |
|
super().__init__() |
|
self.conv = Conv2dLayer( |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
bias, |
|
activation, |
|
up, |
|
down, |
|
resample_filter, |
|
conv_clamp, |
|
trainable, |
|
) |
|
|
|
self.weight_maskUpdater = torch.ones(1, 1, kernel_size, kernel_size) |
|
self.slide_winsize = kernel_size**2 |
|
self.stride = down |
|
self.padding = kernel_size // 2 if kernel_size % 2 == 1 else 0 |
|
|
|
def forward(self, x, mask=None): |
|
if mask is not None: |
|
with torch.no_grad(): |
|
if self.weight_maskUpdater.type() != x.type(): |
|
self.weight_maskUpdater = self.weight_maskUpdater.to(x) |
|
update_mask = F.conv2d( |
|
mask, |
|
self.weight_maskUpdater, |
|
bias=None, |
|
stride=self.stride, |
|
padding=self.padding, |
|
) |
|
mask_ratio = self.slide_winsize / (update_mask + 1e-8) |
|
update_mask = torch.clamp(update_mask, 0, 1) # 0 or 1 |
|
mask_ratio = torch.mul(mask_ratio, update_mask) |
|
x = self.conv(x) |
|
x = torch.mul(x, mask_ratio) |
|
return x, update_mask |
|
else: |
|
x = self.conv(x) |
|
return x, None |
|
|
|
|
|
class WindowAttention(nn.Module): |
|
r"""Window based multi-head self attention (W-MSA) module with relative position bias. |
|
It supports both of shifted and non-shifted window. |
|
Args: |
|
dim (int): Number of input channels. |
|
window_size (tuple[int]): The height and width of the window. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set |
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
window_size, |
|
num_heads, |
|
down_ratio=1, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
attn_drop=0.0, |
|
proj_drop=0.0, |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.window_size = window_size # Wh, Ww |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim**-0.5 |
|
|
|
self.q = FullyConnectedLayer(in_features=dim, out_features=dim) |
|
self.k = FullyConnectedLayer(in_features=dim, out_features=dim) |
|
self.v = FullyConnectedLayer(in_features=dim, out_features=dim) |
|
self.proj = FullyConnectedLayer(in_features=dim, out_features=dim) |
|
|
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def forward(self, x, mask_windows=None, mask=None): |
|
""" |
|
Args: |
|
x: input features with shape of (num_windows*B, N, C) |
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None |
|
""" |
|
B_, N, C = x.shape |
|
norm_x = F.normalize(x, p=2.0, dim=-1) |
|
q = ( |
|
self.q(norm_x) |
|
.reshape(B_, N, self.num_heads, C // self.num_heads) |
|
.permute(0, 2, 1, 3) |
|
) |
|
k = ( |
|
self.k(norm_x) |
|
.view(B_, -1, self.num_heads, C // self.num_heads) |
|
.permute(0, 2, 3, 1) |
|
) |
|
v = ( |
|
self.v(x) |
|
.view(B_, -1, self.num_heads, C // self.num_heads) |
|
.permute(0, 2, 1, 3) |
|
) |
|
|
|
attn = (q @ k) * self.scale |
|
|
|
if mask is not None: |
|
nW = mask.shape[0] |
|
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze( |
|
1 |
|
).unsqueeze(0) |
|
attn = attn.view(-1, self.num_heads, N, N) |
|
|
|
if mask_windows is not None: |
|
attn_mask_windows = mask_windows.squeeze(-1).unsqueeze(1).unsqueeze(1) |
|
attn = attn + attn_mask_windows.masked_fill( |
|
attn_mask_windows == 0, float(-100.0) |
|
).masked_fill(attn_mask_windows == 1, float(0.0)) |
|
with torch.no_grad(): |
|
mask_windows = torch.clamp( |
|
torch.sum(mask_windows, dim=1, keepdim=True), 0, 1 |
|
).repeat(1, N, 1) |
|
|
|
attn = self.softmax(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) |
|
x = self.proj(x) |
|
return x, mask_windows |
|
|
|
|
|
class SwinTransformerBlock(nn.Module): |
|
r"""Swin Transformer Block. |
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resulotion. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Window size. |
|
shift_size (int): Shift size for SW-MSA. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0 |
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
input_resolution, |
|
num_heads, |
|
down_ratio=1, |
|
window_size=7, |
|
shift_size=0, |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop=0.0, |
|
attn_drop=0.0, |
|
drop_path=0.0, |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.num_heads = num_heads |
|
self.window_size = window_size |
|
self.shift_size = shift_size |
|
self.mlp_ratio = mlp_ratio |
|
if min(self.input_resolution) <= self.window_size: |
|
# if window size is larger than input resolution, we don't partition windows |
|
self.shift_size = 0 |
|
self.window_size = min(self.input_resolution) |
|
assert ( |
|
0 <= self.shift_size < self.window_size |
|
), "shift_size must in 0-window_size" |
|
|
|
if self.shift_size > 0: |
|
down_ratio = 1 |
|
self.attn = WindowAttention( |
|
dim, |
|
window_size=to_2tuple(self.window_size), |
|
num_heads=num_heads, |
|
down_ratio=down_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
attn_drop=attn_drop, |
|
proj_drop=drop, |
|
) |
|
|
|
self.fuse = FullyConnectedLayer( |
|
in_features=dim * 2, out_features=dim, activation="lrelu" |
|
) |
|
|
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=drop, |
|
) |
|
|
|
if self.shift_size > 0: |
|
attn_mask = self.calculate_mask(self.input_resolution) |
|
else: |
|
attn_mask = None |
|
|
|
self.register_buffer("attn_mask", attn_mask) |
|
|
|
def calculate_mask(self, x_size): |
|
# calculate attention mask for SW-MSA |
|
H, W = x_size |
|
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 |
|
h_slices = ( |
|
slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None), |
|
) |
|
w_slices = ( |
|
slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None), |
|
) |
|
cnt = 0 |
|
for h in h_slices: |
|
for w in w_slices: |
|
img_mask[:, h, w, :] = cnt |
|
cnt += 1 |
|
|
|
mask_windows = window_partition( |
|
img_mask, self.window_size |
|
) # nW, window_size, window_size, 1 |
|
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) |
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) |
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill( |
|
attn_mask == 0, float(0.0) |
|
) |
|
|
|
return attn_mask |
|
|
|
def forward(self, x, x_size, mask=None): |
|
# H, W = self.input_resolution |
|
H, W = x_size |
|
B, _, C = x.shape |
|
# assert L == H * W, "input feature has wrong size" |
|
|
|
shortcut = x |
|
x = x.view(B, H, W, C) |
|
if mask is not None: |
|
mask = mask.view(B, H, W, 1) |
|
|
|
# cyclic shift |
|
if self.shift_size > 0: |
|
shifted_x = torch.roll( |
|
x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2) |
|
) |
|
if mask is not None: |
|
shifted_mask = torch.roll( |
|
mask, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2) |
|
) |
|
else: |
|
shifted_x = x |
|
if mask is not None: |
|
shifted_mask = mask |
|
|
|
# partition windows |
|
x_windows = window_partition( |
|
shifted_x, self.window_size |
|
) # nW*B, window_size, window_size, C |
|
x_windows = x_windows.view( |
|
-1, self.window_size * self.window_size, C |
|
) # nW*B, window_size*window_size, C |
|
if mask is not None: |
|
mask_windows = window_partition(shifted_mask, self.window_size) |
|
mask_windows = mask_windows.view(-1, self.window_size * self.window_size, 1) |
|
else: |
|
mask_windows = None |
|
|
|
# W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size |
|
if self.input_resolution == x_size: |
|
attn_windows, mask_windows = self.attn( |
|
x_windows, mask_windows, mask=self.attn_mask |
|
) # nW*B, window_size*window_size, C |
|
else: |
|
attn_windows, mask_windows = self.attn( |
|
x_windows, mask_windows, mask=self.calculate_mask(x_size).to(x.device) |
|
) # nW*B, window_size*window_size, C |
|
|
|
# merge windows |
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) |
|
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C |
|
if mask is not None: |
|
mask_windows = mask_windows.view(-1, self.window_size, self.window_size, 1) |
|
shifted_mask = window_reverse(mask_windows, self.window_size, H, W) |
|
|
|
# reverse cyclic shift |
|
if self.shift_size > 0: |
|
x = torch.roll( |
|
shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2) |
|
) |
|
if mask is not None: |
|
mask = torch.roll( |
|
shifted_mask, shifts=(self.shift_size, self.shift_size), dims=(1, 2) |
|
) |
|
else: |
|
x = shifted_x |
|
if mask is not None: |
|
mask = shifted_mask |
|
x = x.view(B, H * W, C) |
|
if mask is not None: |
|
mask = mask.view(B, H * W, 1) |
|
|
|
# FFN |
|
x = self.fuse(torch.cat([shortcut, x], dim=-1)) |
|
x = self.mlp(x) |
|
|
|
return x, mask |
|
|
|
|
|
class PatchMerging(nn.Module): |
|
def __init__(self, in_channels, out_channels, down=2): |
|
super().__init__() |
|
self.conv = Conv2dLayerPartial( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
activation="lrelu", |
|
down=down, |
|
) |
|
self.down = down |
|
|
|
def forward(self, x, x_size, mask=None): |
|
x = token2feature(x, x_size) |
|
if mask is not None: |
|
mask = token2feature(mask, x_size) |
|
x, mask = self.conv(x, mask) |
|
if self.down != 1: |
|
ratio = 1 / self.down |
|
x_size = (int(x_size[0] * ratio), int(x_size[1] * ratio)) |
|
x = feature2token(x) |
|
if mask is not None: |
|
mask = feature2token(mask) |
|
return x, x_size, mask |
|
|
|
|
|
class PatchUpsampling(nn.Module): |
|
def __init__(self, in_channels, out_channels, up=2): |
|
super().__init__() |
|
self.conv = Conv2dLayerPartial( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
activation="lrelu", |
|
up=up, |
|
) |
|
self.up = up |
|
|
|
def forward(self, x, x_size, mask=None): |
|
x = token2feature(x, x_size) |
|
if mask is not None: |
|
mask = token2feature(mask, x_size) |
|
x, mask = self.conv(x, mask) |
|
if self.up != 1: |
|
x_size = (int(x_size[0] * self.up), int(x_size[1] * self.up)) |
|
x = feature2token(x) |
|
if mask is not None: |
|
mask = feature2token(mask) |
|
return x, x_size, mask |
|
|
|
|
|
class BasicLayer(nn.Module): |
|
"""A basic Swin Transformer layer for one stage. |
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resolution. |
|
depth (int): Number of blocks. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Local window size. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
input_resolution, |
|
depth, |
|
num_heads, |
|
window_size, |
|
down_ratio=1, |
|
mlp_ratio=2.0, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop=0.0, |
|
attn_drop=0.0, |
|
drop_path=0.0, |
|
norm_layer=nn.LayerNorm, |
|
downsample=None, |
|
use_checkpoint=False, |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.depth = depth |
|
self.use_checkpoint = use_checkpoint |
|
|
|
# patch merging layer |
|
if downsample is not None: |
|
# self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) |
|
self.downsample = downsample |
|
else: |
|
self.downsample = None |
|
|
|
# build blocks |
|
self.blocks = nn.ModuleList( |
|
[ |
|
SwinTransformerBlock( |
|
dim=dim, |
|
input_resolution=input_resolution, |
|
num_heads=num_heads, |
|
down_ratio=down_ratio, |
|
window_size=window_size, |
|
shift_size=0 if (i % 2 == 0) else window_size // 2, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop, |
|
attn_drop=attn_drop, |
|
drop_path=drop_path[i] |
|
if isinstance(drop_path, list) |
|
else drop_path, |
|
norm_layer=norm_layer, |
|
) |
|
for i in range(depth) |
|
] |
|
) |
|
|
|
self.conv = Conv2dLayerPartial( |
|
in_channels=dim, out_channels=dim, kernel_size=3, activation="lrelu" |
|
) |
|
|
|
def forward(self, x, x_size, mask=None): |
|
if self.downsample is not None: |
|
x, x_size, mask = self.downsample(x, x_size, mask) |
|
identity = x |
|
for blk in self.blocks: |
|
if self.use_checkpoint: |
|
x, mask = checkpoint.checkpoint(blk, x, x_size, mask) |
|
else: |
|
x, mask = blk(x, x_size, mask) |
|
if mask is not None: |
|
mask = token2feature(mask, x_size) |
|
x, mask = self.conv(token2feature(x, x_size), mask) |
|
x = feature2token(x) + identity |
|
if mask is not None: |
|
mask = feature2token(mask) |
|
return x, x_size, mask |
|
|
|
|
|
class ToToken(nn.Module): |
|
def __init__(self, in_channels=3, dim=128, kernel_size=5, stride=1): |
|
super().__init__() |
|
|
|
self.proj = Conv2dLayerPartial( |
|
in_channels=in_channels, |
|
out_channels=dim, |
|
kernel_size=kernel_size, |
|
activation="lrelu", |
|
) |
|
|
|
def forward(self, x, mask): |
|
x, mask = self.proj(x, mask) |
|
|
|
return x, mask |
|
|
|
|
|
class EncFromRGB(nn.Module): |
|
def __init__( |
|
self, in_channels, out_channels, activation |
|
): # res = 2, ..., resolution_log2 |
|
super().__init__() |
|
self.conv0 = Conv2dLayer( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=1, |
|
activation=activation, |
|
) |
|
self.conv1 = Conv2dLayer( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
activation=activation, |
|
) |
|
|
|
def forward(self, x): |
|
x = self.conv0(x) |
|
x = self.conv1(x) |
|
|
|
return x |
|
|
|
|
|
class ConvBlockDown(nn.Module): |
|
def __init__( |
|
self, in_channels, out_channels, activation |
|
): # res = 2, ..., resolution_log |
|
super().__init__() |
|
|
|
self.conv0 = Conv2dLayer( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
activation=activation, |
|
down=2, |
|
) |
|
self.conv1 = Conv2dLayer( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
activation=activation, |
|
) |
|
|
|
def forward(self, x): |
|
x = self.conv0(x) |
|
x = self.conv1(x) |
|
|
|
return x |
|
|
|
|
|
def token2feature(x, x_size): |
|
B, _, C = x.shape |
|
h, w = x_size |
|
x = x.permute(0, 2, 1).reshape(B, C, h, w) |
|
return x |
|
|
|
|
|
def feature2token(x): |
|
B, C, _, _ = x.shape |
|
x = x.view(B, C, -1).transpose(1, 2) |
|
return x |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__( |
|
self, |
|
res_log2, |
|
img_channels, |
|
activation, |
|
patch_size=5, |
|
channels=16, |
|
drop_path_rate=0.1, |
|
): |
|
super().__init__() |
|
|
|
self.resolution = [] |
|
|
|
for i in range(res_log2, 3, -1): # from input size to 16x16 |
|
res = 2**i |
|
self.resolution.append(res) |
|
if i == res_log2: |
|
block = EncFromRGB(img_channels * 2 + 1, nf(i), activation) |
|
else: |
|
block = ConvBlockDown(nf(i + 1), nf(i), activation) |
|
setattr(self, "EncConv_Block_%dx%d" % (res, res), block) |
|
|
|
def forward(self, x): |
|
out = {} |
|
for res in self.resolution: |
|
res_log2 = int(np.log2(res)) |
|
x = getattr(self, "EncConv_Block_%dx%d" % (res, res))(x) |
|
out[res_log2] = x |
|
|
|
return out |
|
|
|
|
|
class ToStyle(nn.Module): |
|
def __init__(self, in_channels, out_channels, activation, drop_rate): |
|
super().__init__() |
|
self.conv = nn.Sequential( |
|
Conv2dLayer( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
kernel_size=3, |
|
activation=activation, |
|
down=2, |
|
), |
|
Conv2dLayer( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
kernel_size=3, |
|
activation=activation, |
|
down=2, |
|
), |
|
Conv2dLayer( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
kernel_size=3, |
|
activation=activation, |
|
down=2, |
|
), |
|
) |
|
|
|
self.pool = nn.AdaptiveAvgPool2d(1) |
|
self.fc = FullyConnectedLayer( |
|
in_features=in_channels, out_features=out_channels, activation=activation |
|
) |
|
# self.dropout = nn.Dropout(drop_rate) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.pool(x) |
|
x = self.fc(x.flatten(start_dim=1)) |
|
# x = self.dropout(x) |
|
|
|
return x |
|
|
|
|
|
class DecBlockFirstV2(nn.Module): |
|
def __init__( |
|
self, |
|
res, |
|
in_channels, |
|
out_channels, |
|
activation, |
|
style_dim, |
|
use_noise, |
|
demodulate, |
|
img_channels, |
|
): |
|
super().__init__() |
|
self.res = res |
|
|
|
self.conv0 = Conv2dLayer( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
kernel_size=3, |
|
activation=activation, |
|
) |
|
self.conv1 = StyleConv( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
style_dim=style_dim, |
|
resolution=2**res, |
|
kernel_size=3, |
|
use_noise=use_noise, |
|
activation=activation, |
|
demodulate=demodulate, |
|
) |
|
self.toRGB = ToRGB( |
|
in_channels=out_channels, |
|
out_channels=img_channels, |
|
style_dim=style_dim, |
|
kernel_size=1, |
|
demodulate=False, |
|
) |
|
|
|
def forward(self, x, ws, gs, E_features, noise_mode="random"): |
|
# x = self.fc(x).view(x.shape[0], -1, 4, 4) |
|
x = self.conv0(x) |
|
x = x + E_features[self.res] |
|
style = get_style_code(ws[:, 0], gs) |
|
x = self.conv1(x, style, noise_mode=noise_mode) |
|
style = get_style_code(ws[:, 1], gs) |
|
img = self.toRGB(x, style, skip=None) |
|
|
|
return x, img |
|
|
|
|
|
class DecBlock(nn.Module): |
|
def __init__( |
|
self, |
|
res, |
|
in_channels, |
|
out_channels, |
|
activation, |
|
style_dim, |
|
use_noise, |
|
demodulate, |
|
img_channels, |
|
): # res = 4, ..., resolution_log2 |
|
super().__init__() |
|
self.res = res |
|
|
|
self.conv0 = StyleConv( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
style_dim=style_dim, |
|
resolution=2**res, |
|
kernel_size=3, |
|
up=2, |
|
use_noise=use_noise, |
|
activation=activation, |
|
demodulate=demodulate, |
|
) |
|
self.conv1 = StyleConv( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
style_dim=style_dim, |
|
resolution=2**res, |
|
kernel_size=3, |
|
use_noise=use_noise, |
|
activation=activation, |
|
demodulate=demodulate, |
|
) |
|
self.toRGB = ToRGB( |
|
in_channels=out_channels, |
|
out_channels=img_channels, |
|
style_dim=style_dim, |
|
kernel_size=1, |
|
demodulate=False, |
|
) |
|
|
|
def forward(self, x, img, ws, gs, E_features, noise_mode="random"): |
|
style = get_style_code(ws[:, self.res * 2 - 9], gs) |
|
x = self.conv0(x, style, noise_mode=noise_mode) |
|
x = x + E_features[self.res] |
|
style = get_style_code(ws[:, self.res * 2 - 8], gs) |
|
x = self.conv1(x, style, noise_mode=noise_mode) |
|
style = get_style_code(ws[:, self.res * 2 - 7], gs) |
|
img = self.toRGB(x, style, skip=img) |
|
|
|
return x, img |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__( |
|
self, res_log2, activation, style_dim, use_noise, demodulate, img_channels |
|
): |
|
super().__init__() |
|
self.Dec_16x16 = DecBlockFirstV2( |
|
4, nf(4), nf(4), activation, style_dim, use_noise, demodulate, img_channels |
|
) |
|
for res in range(5, res_log2 + 1): |
|
setattr( |
|
self, |
|
"Dec_%dx%d" % (2**res, 2**res), |
|
DecBlock( |
|
res, |
|
nf(res - 1), |
|
nf(res), |
|
activation, |
|
style_dim, |
|
use_noise, |
|
demodulate, |
|
img_channels, |
|
), |
|
) |
|
self.res_log2 = res_log2 |
|
|
|
def forward(self, x, ws, gs, E_features, noise_mode="random"): |
|
x, img = self.Dec_16x16(x, ws, gs, E_features, noise_mode=noise_mode) |
|
for res in range(5, self.res_log2 + 1): |
|
block = getattr(self, "Dec_%dx%d" % (2**res, 2**res)) |
|
x, img = block(x, img, ws, gs, E_features, noise_mode=noise_mode) |
|
|
|
return img |
|
|
|
|
|
class DecStyleBlock(nn.Module): |
|
def __init__( |
|
self, |
|
res, |
|
in_channels, |
|
out_channels, |
|
activation, |
|
style_dim, |
|
use_noise, |
|
demodulate, |
|
img_channels, |
|
): |
|
super().__init__() |
|
self.res = res |
|
|
|
self.conv0 = StyleConv( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
style_dim=style_dim, |
|
resolution=2**res, |
|
kernel_size=3, |
|
up=2, |
|
use_noise=use_noise, |
|
activation=activation, |
|
demodulate=demodulate, |
|
) |
|
self.conv1 = StyleConv( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
style_dim=style_dim, |
|
resolution=2**res, |
|
kernel_size=3, |
|
use_noise=use_noise, |
|
activation=activation, |
|
demodulate=demodulate, |
|
) |
|
self.toRGB = ToRGB( |
|
in_channels=out_channels, |
|
out_channels=img_channels, |
|
style_dim=style_dim, |
|
kernel_size=1, |
|
demodulate=False, |
|
) |
|
|
|
def forward(self, x, img, style, skip, noise_mode="random"): |
|
x = self.conv0(x, style, noise_mode=noise_mode) |
|
x = x + skip |
|
x = self.conv1(x, style, noise_mode=noise_mode) |
|
img = self.toRGB(x, style, skip=img) |
|
|
|
return x, img |
|
|
|
|
|
class FirstStage(nn.Module): |
|
def __init__( |
|
self, |
|
img_channels, |
|
img_resolution=256, |
|
dim=180, |
|
w_dim=512, |
|
use_noise=False, |
|
demodulate=True, |
|
activation="lrelu", |
|
): |
|
super().__init__() |
|
res = 64 |
|
|
|
self.conv_first = Conv2dLayerPartial( |
|
in_channels=img_channels + 1, |
|
out_channels=dim, |
|
kernel_size=3, |
|
activation=activation, |
|
) |
|
self.enc_conv = nn.ModuleList() |
|
down_time = int(np.log2(img_resolution // res)) |
|
# 根据图片尺寸构建 swim transformer 的层数 |
|
for i in range(down_time): # from input size to 64 |
|
self.enc_conv.append( |
|
Conv2dLayerPartial( |
|
in_channels=dim, |
|
out_channels=dim, |
|
kernel_size=3, |
|
down=2, |
|
activation=activation, |
|
) |
|
) |
|
|
|
# from 64 -> 16 -> 64 |
|
depths = [2, 3, 4, 3, 2] |
|
ratios = [1, 1 / 2, 1 / 2, 2, 2] |
|
num_heads = 6 |
|
window_sizes = [8, 16, 16, 16, 8] |
|
drop_path_rate = 0.1 |
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
|
|
self.tran = nn.ModuleList() |
|
for i, depth in enumerate(depths): |
|
res = int(res * ratios[i]) |
|
if ratios[i] < 1: |
|
merge = PatchMerging(dim, dim, down=int(1 / ratios[i])) |
|
elif ratios[i] > 1: |
|
merge = PatchUpsampling(dim, dim, up=ratios[i]) |
|
else: |
|
merge = None |
|
self.tran.append( |
|
BasicLayer( |
|
dim=dim, |
|
input_resolution=[res, res], |
|
depth=depth, |
|
num_heads=num_heads, |
|
window_size=window_sizes[i], |
|
drop_path=dpr[sum(depths[:i]) : sum(depths[: i + 1])], |
|
downsample=merge, |
|
) |
|
) |
|
|
|
# global style |
|
down_conv = [] |
|
for i in range(int(np.log2(16))): |
|
down_conv.append( |
|
Conv2dLayer( |
|
in_channels=dim, |
|
out_channels=dim, |
|
kernel_size=3, |
|
down=2, |
|
activation=activation, |
|
) |
|
) |
|
down_conv.append(nn.AdaptiveAvgPool2d((1, 1))) |
|
self.down_conv = nn.Sequential(*down_conv) |
|
self.to_style = FullyConnectedLayer( |
|
in_features=dim, out_features=dim * 2, activation=activation |
|
) |
|
self.ws_style = FullyConnectedLayer( |
|
in_features=w_dim, out_features=dim, activation=activation |
|
) |
|
self.to_square = FullyConnectedLayer( |
|
in_features=dim, out_features=16 * 16, activation=activation |
|
) |
|
|
|
style_dim = dim * 3 |
|
self.dec_conv = nn.ModuleList() |
|
for i in range(down_time): # from 64 to input size |
|
res = res * 2 |
|
self.dec_conv.append( |
|
DecStyleBlock( |
|
res, |
|
dim, |
|
dim, |
|
activation, |
|
style_dim, |
|
use_noise, |
|
demodulate, |
|
img_channels, |
|
) |
|
) |
|
|
|
def forward(self, images_in, masks_in, ws, noise_mode="random"): |
|
x = torch.cat([masks_in - 0.5, images_in * masks_in], dim=1) |
|
|
|
skips = [] |
|
x, mask = self.conv_first(x, masks_in) # input size |
|
skips.append(x) |
|
for i, block in enumerate(self.enc_conv): # input size to 64 |
|
x, mask = block(x, mask) |
|
if i != len(self.enc_conv) - 1: |
|
skips.append(x) |
|
|
|
x_size = x.size()[-2:] |
|
x = feature2token(x) |
|
mask = feature2token(mask) |
|
mid = len(self.tran) // 2 |
|
for i, block in enumerate(self.tran): # 64 to 16 |
|
if i < mid: |
|
x, x_size, mask = block(x, x_size, mask) |
|
skips.append(x) |
|
elif i > mid: |
|
x, x_size, mask = block(x, x_size, None) |
|
x = x + skips[mid - i] |
|
else: |
|
x, x_size, mask = block(x, x_size, None) |
|
|
|
mul_map = torch.ones_like(x) * 0.5 |
|
mul_map = F.dropout(mul_map, training=True).to(x.device) |
|
ws = self.ws_style(ws[:, -1]).to(x.device) |
|
add_n = self.to_square(ws).unsqueeze(1).to(x.device) |
|
add_n = ( |
|
F.interpolate( |
|
add_n, size=x.size(1), mode="linear", align_corners=False |
|
) |
|
.squeeze(1) |
|
.unsqueeze(-1) |
|
).to(x.device) |
|
x = x * mul_map + add_n * (1 - mul_map) |
|
gs = self.to_style( |
|
self.down_conv(token2feature(x, x_size)).flatten(start_dim=1) |
|
).to(x.device) |
|
style = torch.cat([gs, ws], dim=1) |
|
|
|
x = token2feature(x, x_size).contiguous() |
|
img = None |
|
for i, block in enumerate(self.dec_conv): |
|
x, img = block( |
|
x, img, style, skips[len(self.dec_conv) - i - 1], noise_mode=noise_mode |
|
) |
|
|
|
# ensemble |
|
img = img * (1 - masks_in) + images_in * masks_in |
|
|
|
return img |
|
|
|
|
|
class SynthesisNet(nn.Module): |
|
def __init__( |
|
self, |
|
w_dim, # Intermediate latent (W) dimensionality. |
|
img_resolution, # Output image resolution. |
|
img_channels=3, # Number of color channels. |
|
channel_base=32768, # Overall multiplier for the number of channels. |
|
channel_decay=1.0, |
|
channel_max=512, # Maximum number of channels in any layer. |
|
activation="lrelu", # Activation function: 'relu', 'lrelu', etc. |
|
drop_rate=0.5, |
|
use_noise=False, |
|
demodulate=True, |
|
): |
|
super().__init__() |
|
resolution_log2 = int(np.log2(img_resolution)) |
|
assert img_resolution == 2**resolution_log2 and img_resolution >= 4 |
|
|
|
self.num_layers = resolution_log2 * 2 - 3 * 2 |
|
self.img_resolution = img_resolution |
|
self.resolution_log2 = resolution_log2 |
|
|
|
# first stage |
|
self.first_stage = FirstStage( |
|
img_channels, |
|
img_resolution=img_resolution, |
|
w_dim=w_dim, |
|
use_noise=False, |
|
demodulate=demodulate, |
|
) |
|
|
|
# second stage |
|
self.enc = Encoder( |
|
resolution_log2, img_channels, activation, patch_size=5, channels=16 |
|
) |
|
self.to_square = FullyConnectedLayer( |
|
in_features=w_dim, out_features=16 * 16, activation=activation |
|
) |
|
self.to_style = ToStyle( |
|
in_channels=nf(4), |
|
out_channels=nf(2) * 2, |
|
activation=activation, |
|
drop_rate=drop_rate, |
|
) |
|
style_dim = w_dim + nf(2) * 2 |
|
self.dec = Decoder( |
|
resolution_log2, activation, style_dim, use_noise, demodulate, img_channels |
|
) |
|
|
|
def forward(self, images_in, masks_in, ws, noise_mode="random", return_stg1=False): |
|
out_stg1 = self.first_stage(images_in, masks_in, ws, noise_mode=noise_mode) |
|
|
|
# encoder |
|
x = images_in * masks_in + out_stg1 * (1 - masks_in) |
|
x = torch.cat([masks_in - 0.5, x, images_in * masks_in], dim=1) |
|
E_features = self.enc(x) |
|
|
|
fea_16 = E_features[4].to(x.device) |
|
mul_map = torch.ones_like(fea_16) * 0.5 |
|
mul_map = F.dropout(mul_map, training=True).to(x.device) |
|
add_n = self.to_square(ws[:, 0]).view(-1, 16, 16).unsqueeze(1) |
|
add_n = F.interpolate( |
|
add_n, size=fea_16.size()[-2:], mode="bilinear", align_corners=False |
|
).to(x.device) |
|
fea_16 = fea_16 * mul_map + add_n * (1 - mul_map) |
|
E_features[4] = fea_16 |
|
|
|
# style |
|
gs = self.to_style(fea_16).to(x.device) |
|
|
|
# decoder |
|
img = self.dec(fea_16, ws, gs, E_features, noise_mode=noise_mode).to(x.device) |
|
|
|
# ensemble |
|
img = img * (1 - masks_in) + images_in * masks_in |
|
|
|
if not return_stg1: |
|
return img |
|
else: |
|
return img, out_stg1 |
|
|
|
|
|
class Generator(nn.Module): |
|
def __init__( |
|
self, |
|
z_dim, # Input latent (Z) dimensionality, 0 = no latent. |
|
c_dim, # Conditioning label (C) dimensionality, 0 = no label. |
|
w_dim, # Intermediate latent (W) dimensionality. |
|
img_resolution, # resolution of generated image |
|
img_channels, # Number of input color channels. |
|
synthesis_kwargs={}, # Arguments for SynthesisNetwork. |
|
mapping_kwargs={}, # Arguments for MappingNetwork. |
|
): |
|
super().__init__() |
|
self.z_dim = z_dim |
|
self.c_dim = c_dim |
|
self.w_dim = w_dim |
|
self.img_resolution = img_resolution |
|
self.img_channels = img_channels |
|
|
|
self.synthesis = SynthesisNet( |
|
w_dim=w_dim, |
|
img_resolution=img_resolution, |
|
img_channels=img_channels, |
|
**synthesis_kwargs, |
|
) |
|
self.mapping = MappingNet( |
|
z_dim=z_dim, |
|
c_dim=c_dim, |
|
w_dim=w_dim, |
|
num_ws=self.synthesis.num_layers, |
|
**mapping_kwargs, |
|
) |
|
|
|
def forward( |
|
self, |
|
images_in, |
|
masks_in, |
|
z, |
|
c, |
|
truncation_psi=1, |
|
truncation_cutoff=None, |
|
skip_w_avg_update=False, |
|
noise_mode="none", |
|
return_stg1=False, |
|
): |
|
ws = self.mapping( |
|
z, |
|
c, |
|
truncation_psi=truncation_psi, |
|
truncation_cutoff=truncation_cutoff, |
|
skip_w_avg_update=skip_w_avg_update, |
|
) |
|
img = self.synthesis(images_in, masks_in, ws, noise_mode=noise_mode) |
|
return img |
|
|
|
|
|
class MAT(nn.Module): |
|
def __init__(self, state_dict): |
|
super(MAT, self).__init__() |
|
self.model_arch = "MAT" |
|
self.sub_type = "Inpaint" |
|
self.in_nc = 3 |
|
self.out_nc = 3 |
|
self.scale = 1 |
|
|
|
self.supports_fp16 = False |
|
self.supports_bf16 = True |
|
|
|
self.min_size = 512 |
|
self.pad_mod = 512 |
|
self.pad_to_square = True |
|
|
|
seed = 240 # pick up a random number |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
|
|
self.model = Generator( |
|
z_dim=512, c_dim=0, w_dim=512, img_resolution=512, img_channels=3 |
|
) |
|
self.z = torch.from_numpy(np.random.randn(1, self.model.z_dim)) # [1., 512] |
|
self.label = torch.zeros([1, self.model.c_dim]) |
|
self.state = { |
|
k.replace("synthesis", "model.synthesis").replace( |
|
"mapping", "model.mapping" |
|
): v |
|
for k, v in state_dict.items() |
|
} |
|
self.load_state_dict(self.state, strict=False) |
|
|
|
def forward(self, image, mask): |
|
"""Input images and output images have same size |
|
images: [H, W, C] RGB |
|
masks: [H, W] mask area == 255 |
|
return: BGR IMAGE |
|
""" |
|
|
|
image = image * 2 - 1 # [0, 1] -> [-1, 1] |
|
mask = 1 - mask |
|
|
|
output = self.model( |
|
image, mask, self.z, self.label, truncation_psi=1, noise_mode="none" |
|
) |
|
|
|
return output * 0.5 + 0.5
|
|
|