You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
46 lines
1.6 KiB
46 lines
1.6 KiB
import torch |
|
from contextlib import contextmanager |
|
|
|
class Linear(torch.nn.Module): |
|
def __init__(self, in_features: int, out_features: int, bias: bool = True, |
|
device=None, dtype=None) -> None: |
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
super().__init__() |
|
self.in_features = in_features |
|
self.out_features = out_features |
|
self.weight = torch.nn.Parameter(torch.empty((out_features, in_features), **factory_kwargs)) |
|
if bias: |
|
self.bias = torch.nn.Parameter(torch.empty(out_features, **factory_kwargs)) |
|
else: |
|
self.register_parameter('bias', None) |
|
|
|
def forward(self, input): |
|
return torch.nn.functional.linear(input, self.weight, self.bias) |
|
|
|
class Conv2d(torch.nn.Conv2d): |
|
def reset_parameters(self): |
|
return None |
|
|
|
def conv_nd(dims, *args, **kwargs): |
|
if dims == 2: |
|
return Conv2d(*args, **kwargs) |
|
else: |
|
raise ValueError(f"unsupported dimensions: {dims}") |
|
|
|
@contextmanager |
|
def use_comfy_ops(device=None, dtype=None): # Kind of an ugly hack but I can't think of a better way |
|
old_torch_nn_linear = torch.nn.Linear |
|
force_device = device |
|
force_dtype = dtype |
|
def linear_with_dtype(in_features: int, out_features: int, bias: bool = True, device=None, dtype=None): |
|
if force_device is not None: |
|
device = force_device |
|
if force_dtype is not None: |
|
dtype = force_dtype |
|
return Linear(in_features, out_features, bias=bias, device=device, dtype=dtype) |
|
|
|
torch.nn.Linear = linear_with_dtype |
|
try: |
|
yield |
|
finally: |
|
torch.nn.Linear = old_torch_nn_linear
|
|
|