The most powerful and modular stable diffusion GUI, api and backend with a graph/nodes interface.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

465 lines
17 KiB

import os
import sys
import copy
import json
import threading
import heapq
import traceback
import gc
import time
import torch
import nodes
import comfy.model_management
def get_input_data(inputs, class_def, unique_id, outputs={}, prompt={}, extra_data={}):
valid_inputs = class_def.INPUT_TYPES()
input_data_all = {}
for x in inputs:
input_data = inputs[x]
if isinstance(input_data, list):
input_unique_id = input_data[0]
output_index = input_data[1]
if input_unique_id not in outputs:
return None
obj = outputs[input_unique_id][output_index]
input_data_all[x] = obj
else:
if ("required" in valid_inputs and x in valid_inputs["required"]) or ("optional" in valid_inputs and x in valid_inputs["optional"]):
input_data_all[x] = [input_data]
if "hidden" in valid_inputs:
h = valid_inputs["hidden"]
for x in h:
if h[x] == "PROMPT":
input_data_all[x] = [prompt]
if h[x] == "EXTRA_PNGINFO":
if "extra_pnginfo" in extra_data:
input_data_all[x] = [extra_data['extra_pnginfo']]
if h[x] == "UNIQUE_ID":
input_data_all[x] = [unique_id]
return input_data_all
def map_node_over_list(obj, input_data_all, func, allow_interrupt=False):
# check if node wants the lists
intput_is_list = False
if hasattr(obj, "INPUT_IS_LIST"):
intput_is_list = obj.INPUT_IS_LIST
max_len_input = max([len(x) for x in input_data_all.values()])
# get a slice of inputs, repeat last input when list isn't long enough
def slice_dict(d, i):
d_new = dict()
for k,v in d.items():
d_new[k] = v[i if len(v) > i else -1]
return d_new
results = []
if intput_is_list:
if allow_interrupt:
nodes.before_node_execution()
results.append(getattr(obj, func)(**input_data_all))
else:
for i in range(max_len_input):
if allow_interrupt:
nodes.before_node_execution()
results.append(getattr(obj, func)(**slice_dict(input_data_all, i)))
return results
def get_output_data(obj, input_data_all):
results = []
uis = []
return_values = map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True)
for r in return_values:
if isinstance(r, dict):
if 'ui' in r:
uis.append(r['ui'])
if 'result' in r:
results.append(r['result'])
else:
results.append(r)
output = []
if len(results) > 0:
# check which outputs need concatenating
output_is_list = [False] * len(results[0])
if hasattr(obj, "OUTPUT_IS_LIST"):
output_is_list = obj.OUTPUT_IS_LIST
# merge node execution results
for i, is_list in zip(range(len(results[0])), output_is_list):
if is_list:
output.append([x for o in results for x in o[i]])
else:
output.append([o[i] for o in results])
ui = dict()
if len(uis) > 0:
ui = {k: [y for x in uis for y in x[k]] for k in uis[0].keys()}
return output, ui
def recursive_execute(server, prompt, outputs, current_item, extra_data, executed, prompt_id, outputs_ui):
unique_id = current_item
inputs = prompt[unique_id]['inputs']
class_type = prompt[unique_id]['class_type']
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
if unique_id in outputs:
return
for x in inputs:
input_data = inputs[x]
if isinstance(input_data, list):
input_unique_id = input_data[0]
output_index = input_data[1]
if input_unique_id not in outputs:
recursive_execute(server, prompt, outputs, input_unique_id, extra_data, executed, prompt_id, outputs_ui)
input_data_all = get_input_data(inputs, class_def, unique_id, outputs, prompt, extra_data)
if server.client_id is not None:
server.last_node_id = unique_id
server.send_sync("executing", { "node": unique_id, "prompt_id": prompt_id }, server.client_id)
obj = class_def()
output_data, output_ui = get_output_data(obj, input_data_all)
outputs[unique_id] = output_data
if len(output_ui) > 0:
outputs_ui[unique_id] = output_ui
if server.client_id is not None:
server.send_sync("executed", { "node": unique_id, "output": output_ui, "prompt_id": prompt_id }, server.client_id)
executed.add(unique_id)
def recursive_will_execute(prompt, outputs, current_item):
unique_id = current_item
inputs = prompt[unique_id]['inputs']
will_execute = []
if unique_id in outputs:
return []
for x in inputs:
input_data = inputs[x]
if isinstance(input_data, list):
input_unique_id = input_data[0]
output_index = input_data[1]
if input_unique_id not in outputs:
will_execute += recursive_will_execute(prompt, outputs, input_unique_id)
return will_execute + [unique_id]
def recursive_output_delete_if_changed(prompt, old_prompt, outputs, current_item):
unique_id = current_item
inputs = prompt[unique_id]['inputs']
class_type = prompt[unique_id]['class_type']
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
is_changed_old = ''
is_changed = ''
to_delete = False
if hasattr(class_def, 'IS_CHANGED'):
if unique_id in old_prompt and 'is_changed' in old_prompt[unique_id]:
is_changed_old = old_prompt[unique_id]['is_changed']
if 'is_changed' not in prompt[unique_id]:
input_data_all = get_input_data(inputs, class_def, unique_id, outputs)
if input_data_all is not None:
try:
#is_changed = class_def.IS_CHANGED(**input_data_all)
is_changed = map_node_over_list(class_def, input_data_all, "IS_CHANGED")
prompt[unique_id]['is_changed'] = is_changed
except:
to_delete = True
else:
is_changed = prompt[unique_id]['is_changed']
if unique_id not in outputs:
return True
if not to_delete:
if is_changed != is_changed_old:
to_delete = True
elif unique_id not in old_prompt:
to_delete = True
elif inputs == old_prompt[unique_id]['inputs']:
for x in inputs:
input_data = inputs[x]
if isinstance(input_data, list):
input_unique_id = input_data[0]
output_index = input_data[1]
if input_unique_id in outputs:
to_delete = recursive_output_delete_if_changed(prompt, old_prompt, outputs, input_unique_id)
else:
to_delete = True
if to_delete:
break
else:
to_delete = True
if to_delete:
d = outputs.pop(unique_id)
del d
return to_delete
class PromptExecutor:
def __init__(self, server):
self.outputs = {}
self.outputs_ui = {}
self.old_prompt = {}
self.server = server
def execute(self, prompt, prompt_id, extra_data={}, execute_outputs=[]):
nodes.interrupt_processing(False)
if "client_id" in extra_data:
self.server.client_id = extra_data["client_id"]
else:
self.server.client_id = None
execution_start_time = time.perf_counter()
if self.server.client_id is not None:
self.server.send_sync("execution_start", { "prompt_id": prompt_id}, self.server.client_id)
with torch.inference_mode():
#delete cached outputs if nodes don't exist for them
to_delete = []
for o in self.outputs:
if o not in prompt:
to_delete += [o]
for o in to_delete:
d = self.outputs.pop(o)
del d
for x in prompt:
recursive_output_delete_if_changed(prompt, self.old_prompt, self.outputs, x)
current_outputs = set(self.outputs.keys())
for x in list(self.outputs_ui.keys()):
if x not in current_outputs:
d = self.outputs_ui.pop(x)
del d
if self.server.client_id is not None:
self.server.send_sync("execution_cached", { "nodes": list(current_outputs) , "prompt_id": prompt_id}, self.server.client_id)
executed = set()
try:
to_execute = []
for x in list(execute_outputs):
to_execute += [(0, x)]
while len(to_execute) > 0:
#always execute the output that depends on the least amount of unexecuted nodes first
to_execute = sorted(list(map(lambda a: (len(recursive_will_execute(prompt, self.outputs, a[-1])), a[-1]), to_execute)))
x = to_execute.pop(0)[-1]
recursive_execute(self.server, prompt, self.outputs, x, extra_data, executed, prompt_id, self.outputs_ui)
except Exception as e:
if isinstance(e, comfy.model_management.InterruptProcessingException):
print("Processing interrupted")
else:
message = str(traceback.format_exc())
print(message)
if self.server.client_id is not None:
self.server.send_sync("execution_error", { "message": message, "prompt_id": prompt_id }, self.server.client_id)
to_delete = []
for o in self.outputs:
if (o not in current_outputs) and (o not in executed):
to_delete += [o]
if o in self.old_prompt:
d = self.old_prompt.pop(o)
del d
for o in to_delete:
d = self.outputs.pop(o)
del d
finally:
for x in executed:
self.old_prompt[x] = copy.deepcopy(prompt[x])
self.server.last_node_id = None
if self.server.client_id is not None:
self.server.send_sync("executing", { "node": None, "prompt_id": prompt_id }, self.server.client_id)
print("Prompt executed in {:.2f} seconds".format(time.perf_counter() - execution_start_time))
gc.collect()
comfy.model_management.soft_empty_cache()
def validate_inputs(prompt, item, validated):
unique_id = item
if unique_id in validated:
return validated[unique_id]
inputs = prompt[unique_id]['inputs']
class_type = prompt[unique_id]['class_type']
obj_class = nodes.NODE_CLASS_MAPPINGS[class_type]
class_inputs = obj_class.INPUT_TYPES()
required_inputs = class_inputs['required']
for x in required_inputs:
if x not in inputs:
return (False, "Required input is missing. {}, {}".format(class_type, x))
val = inputs[x]
info = required_inputs[x]
type_input = info[0]
if isinstance(val, list):
if len(val) != 2:
return (False, "Bad Input. {}, {}".format(class_type, x))
o_id = val[0]
o_class_type = prompt[o_id]['class_type']
r = nodes.NODE_CLASS_MAPPINGS[o_class_type].RETURN_TYPES
if r[val[1]] != type_input:
return (False, "Return type mismatch. {}, {}, {} != {}".format(class_type, x, r[val[1]], type_input))
r = validate_inputs(prompt, o_id, validated)
if r[0] == False:
validated[o_id] = r
return r
else:
if type_input == "INT":
val = int(val)
inputs[x] = val
if type_input == "FLOAT":
val = float(val)
inputs[x] = val
if type_input == "STRING":
val = str(val)
inputs[x] = val
if len(info) > 1:
if "min" in info[1] and val < info[1]["min"]:
return (False, "Value smaller than min. {}, {}".format(class_type, x))
if "max" in info[1] and val > info[1]["max"]:
return (False, "Value bigger than max. {}, {}".format(class_type, x))
if hasattr(obj_class, "VALIDATE_INPUTS"):
input_data_all = get_input_data(inputs, obj_class, unique_id)
#ret = obj_class.VALIDATE_INPUTS(**input_data_all)
ret = map_node_over_list(obj_class, input_data_all, "VALIDATE_INPUTS")
for r in ret:
if r != True:
return (False, "{}, {}".format(class_type, r))
else:
if isinstance(type_input, list):
if val not in type_input:
return (False, "Value not in list. {}, {}: {} not in {}".format(class_type, x, val, type_input))
ret = (True, "")
validated[unique_id] = ret
return ret
def validate_prompt(prompt):
outputs = set()
for x in prompt:
class_ = nodes.NODE_CLASS_MAPPINGS[prompt[x]['class_type']]
if hasattr(class_, 'OUTPUT_NODE') and class_.OUTPUT_NODE == True:
outputs.add(x)
if len(outputs) == 0:
return (False, "Prompt has no outputs")
good_outputs = set()
errors = []
validated = {}
for o in outputs:
valid = False
reason = ""
try:
m = validate_inputs(prompt, o, validated)
valid = m[0]
reason = m[1]
except Exception as e:
print(traceback.format_exc())
valid = False
reason = "Parsing error"
if valid == True:
good_outputs.add(o)
else:
print("Failed to validate prompt for output {} {}".format(o, reason))
print("output will be ignored")
errors += [(o, reason)]
if len(good_outputs) == 0:
errors_list = "\n".join(set(map(lambda a: "{}".format(a[1]), errors)))
return (False, "Prompt has no properly connected outputs\n {}".format(errors_list))
return (True, "", list(good_outputs))
class PromptQueue:
def __init__(self, server):
self.server = server
self.mutex = threading.RLock()
self.not_empty = threading.Condition(self.mutex)
self.task_counter = 0
self.queue = []
self.currently_running = {}
self.history = {}
server.prompt_queue = self
def put(self, item):
with self.mutex:
heapq.heappush(self.queue, item)
self.server.queue_updated()
self.not_empty.notify()
def get(self):
with self.not_empty:
while len(self.queue) == 0:
self.not_empty.wait()
item = heapq.heappop(self.queue)
i = self.task_counter
self.currently_running[i] = copy.deepcopy(item)
self.task_counter += 1
self.server.queue_updated()
return (item, i)
def task_done(self, item_id, outputs):
with self.mutex:
prompt = self.currently_running.pop(item_id)
self.history[prompt[1]] = { "prompt": prompt, "outputs": {} }
for o in outputs:
self.history[prompt[1]]["outputs"][o] = outputs[o]
self.server.queue_updated()
def get_current_queue(self):
with self.mutex:
out = []
for x in self.currently_running.values():
out += [x]
return (out, copy.deepcopy(self.queue))
def get_tasks_remaining(self):
with self.mutex:
return len(self.queue) + len(self.currently_running)
def wipe_queue(self):
with self.mutex:
self.queue = []
self.server.queue_updated()
def delete_queue_item(self, function):
with self.mutex:
for x in range(len(self.queue)):
if function(self.queue[x]):
if len(self.queue) == 1:
self.wipe_queue()
else:
self.queue.pop(x)
heapq.heapify(self.queue)
self.server.queue_updated()
return True
return False
def get_history(self):
with self.mutex:
return copy.deepcopy(self.history)
def wipe_history(self):
with self.mutex:
self.history = {}
def delete_history_item(self, id_to_delete):
with self.mutex:
self.history.pop(id_to_delete, None)