You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
95 lines
3.8 KiB
95 lines
3.8 KiB
class Example: |
|
""" |
|
A example node |
|
|
|
Class methods |
|
------------- |
|
INPUT_TYPES (dict): |
|
Tell the main program input parameters of nodes. |
|
|
|
Attributes |
|
---------- |
|
RETURN_TYPES (`tuple`): |
|
The type of each element in the output tulple. |
|
RETURN_NAMES (`tuple`): |
|
Optional: The name of each output in the output tulple. |
|
FUNCTION (`str`): |
|
The name of the entry-point method. For example, if `FUNCTION = "execute"` then it will run Example().execute() |
|
OUTPUT_NODE ([`bool`]): |
|
If this node is an output node that outputs a result/image from the graph. The SaveImage node is an example. |
|
The backend iterates on these output nodes and tries to execute all their parents if their parent graph is properly connected. |
|
Assumed to be False if not present. |
|
CATEGORY (`str`): |
|
The category the node should appear in the UI. |
|
execute(s) -> tuple || None: |
|
The entry point method. The name of this method must be the same as the value of property `FUNCTION`. |
|
For example, if `FUNCTION = "execute"` then this method's name must be `execute`, if `FUNCTION = "foo"` then it must be `foo`. |
|
""" |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
""" |
|
Return a dictionary which contains config for all input fields. |
|
Some types (string): "MODEL", "VAE", "CLIP", "CONDITIONING", "LATENT", "IMAGE", "INT", "STRING", "FLOAT". |
|
Input types "INT", "STRING" or "FLOAT" are special values for fields on the node. |
|
The type can be a list for selection. |
|
|
|
Returns: `dict`: |
|
- Key input_fields_group (`string`): Can be either required, hidden or optional. A node class must have property `required` |
|
- Value input_fields (`dict`): Contains input fields config: |
|
* Key field_name (`string`): Name of a entry-point method's argument |
|
* Value field_config (`tuple`): |
|
+ First value is a string indicate the type of field or a list for selection. |
|
+ Secound value is a config for type "INT", "STRING" or "FLOAT". |
|
""" |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"int_field": ("INT", { |
|
"default": 0, |
|
"min": 0, #Minimum value |
|
"max": 4096, #Maximum value |
|
"step": 64 #Slider's step |
|
}), |
|
"float_field": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"print_to_screen": (["enable", "disable"],), |
|
"string_field": ("STRING", { |
|
"multiline": False, #True if you want the field to look like the one on the ClipTextEncode node |
|
"default": "Hello World!" |
|
}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
#RETURN_NAMES = ("image_output_name",) |
|
|
|
FUNCTION = "test" |
|
|
|
#OUTPUT_NODE = False |
|
|
|
CATEGORY = "Example" |
|
|
|
def test(self, image, string_field, int_field, float_field, print_to_screen): |
|
if print_to_screen == "enable": |
|
print(f"""Your input contains: |
|
string_field aka input text: {string_field} |
|
int_field: {int_field} |
|
float_field: {float_field} |
|
""") |
|
#do some processing on the image, in this example I just invert it |
|
image = 1.0 - image |
|
return (image,) |
|
|
|
|
|
# A dictionary that contains all nodes you want to export with their names |
|
# NOTE: names should be globally unique |
|
NODE_CLASS_MAPPINGS = { |
|
"Example": Example |
|
} |
|
|
|
# A dictionary that contains the friendly/humanly readable titles for the nodes |
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"Example": "Example Node" |
|
}
|
|
|