The most powerful and modular stable diffusion GUI, api and backend with a graph/nodes interface.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

248 lines
8.5 KiB

# original source:
# https://github.com/AminRezaei0x443/memory-efficient-attention/blob/1bc0d9e6ac5f82ea43a375135c4e1d3896ee1694/memory_efficient_attention/attention_torch.py
# license:
# MIT
# credit:
# Amin Rezaei (original author)
# Alex Birch (optimized algorithm for 3D tensors, at the expense of removing bias, masking and callbacks)
# implementation of:
# Self-attention Does Not Need O(n2) Memory":
# https://arxiv.org/abs/2112.05682v2
from functools import partial
import torch
from torch import Tensor
from torch.utils.checkpoint import checkpoint
import math
from typing import Optional, NamedTuple, Protocol, List
from torch import Tensor
from typing import List
try:
OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
OOM_EXCEPTION = Exception
def dynamic_slice(
x: Tensor,
starts: List[int],
sizes: List[int],
) -> Tensor:
slicing = [slice(start, start + size) for start, size in zip(starts, sizes)]
return x[slicing]
class AttnChunk(NamedTuple):
exp_values: Tensor
exp_weights_sum: Tensor
max_score: Tensor
class SummarizeChunk(Protocol):
@staticmethod
def __call__(
query: Tensor,
key_t: Tensor,
value: Tensor,
) -> AttnChunk: ...
class ComputeQueryChunkAttn(Protocol):
@staticmethod
def __call__(
query: Tensor,
key_t: Tensor,
value: Tensor,
) -> Tensor: ...
def _summarize_chunk(
query: Tensor,
key_t: Tensor,
value: Tensor,
scale: float,
upcast_attention: bool,
) -> AttnChunk:
if upcast_attention:
with torch.autocast(enabled=False, device_type = 'cuda'):
query = query.float()
key_t = key_t.float()
attn_weights = torch.baddbmm(
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
query,
key_t,
alpha=scale,
beta=0,
)
else:
attn_weights = torch.baddbmm(
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
query,
key_t,
alpha=scale,
beta=0,
)
max_score, _ = torch.max(attn_weights, -1, keepdim=True)
max_score = max_score.detach()
torch.exp(attn_weights - max_score, out=attn_weights)
exp_weights = attn_weights
exp_values = torch.bmm(exp_weights, value)
max_score = max_score.squeeze(-1)
return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score)
def _query_chunk_attention(
query: Tensor,
key_t: Tensor,
value: Tensor,
summarize_chunk: SummarizeChunk,
kv_chunk_size: int,
) -> Tensor:
batch_x_heads, k_channels_per_head, k_tokens = key_t.shape
_, _, v_channels_per_head = value.shape
def chunk_scanner(chunk_idx: int) -> AttnChunk:
key_chunk = dynamic_slice(
key_t,
(0, 0, chunk_idx),
(batch_x_heads, k_channels_per_head, kv_chunk_size)
)
value_chunk = dynamic_slice(
value,
(0, chunk_idx, 0),
(batch_x_heads, kv_chunk_size, v_channels_per_head)
)
return summarize_chunk(query, key_chunk, value_chunk)
chunks: List[AttnChunk] = [
chunk_scanner(chunk) for chunk in torch.arange(0, k_tokens, kv_chunk_size)
]
acc_chunk = AttnChunk(*map(torch.stack, zip(*chunks)))
chunk_values, chunk_weights, chunk_max = acc_chunk
global_max, _ = torch.max(chunk_max, 0, keepdim=True)
max_diffs = torch.exp(chunk_max - global_max)
chunk_values *= torch.unsqueeze(max_diffs, -1)
chunk_weights *= max_diffs
all_values = chunk_values.sum(dim=0)
all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0)
return all_values / all_weights
# TODO: refactor CrossAttention#get_attention_scores to share code with this
def _get_attention_scores_no_kv_chunking(
query: Tensor,
key_t: Tensor,
value: Tensor,
scale: float,
upcast_attention: bool,
) -> Tensor:
if upcast_attention:
with torch.autocast(enabled=False, device_type = 'cuda'):
query = query.float()
key_t = key_t.float()
attn_scores = torch.baddbmm(
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
query,
key_t,
alpha=scale,
beta=0,
)
else:
attn_scores = torch.baddbmm(
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
query,
key_t,
alpha=scale,
beta=0,
)
try:
attn_probs = attn_scores.softmax(dim=-1)
del attn_scores
except OOM_EXCEPTION:
print("ran out of memory while running softmax in _get_attention_scores_no_kv_chunking, trying slower in place softmax instead")
attn_scores -= attn_scores.max(dim=-1, keepdim=True).values
torch.exp(attn_scores, out=attn_scores)
summed = torch.sum(attn_scores, dim=-1, keepdim=True)
attn_scores /= summed
attn_probs = attn_scores
hidden_states_slice = torch.bmm(attn_probs, value)
return hidden_states_slice
class ScannedChunk(NamedTuple):
chunk_idx: int
attn_chunk: AttnChunk
def efficient_dot_product_attention(
query: Tensor,
key_t: Tensor,
value: Tensor,
query_chunk_size=1024,
kv_chunk_size: Optional[int] = None,
kv_chunk_size_min: Optional[int] = None,
use_checkpoint=True,
upcast_attention=False,
):
"""Computes efficient dot-product attention given query, transposed key, and value.
This is efficient version of attention presented in
https://arxiv.org/abs/2112.05682v2 which comes with O(sqrt(n)) memory requirements.
Args:
query: queries for calculating attention with shape of
`[batch * num_heads, tokens, channels_per_head]`.
key_t: keys for calculating attention with shape of
`[batch * num_heads, channels_per_head, tokens]`.
value: values to be used in attention with shape of
`[batch * num_heads, tokens, channels_per_head]`.
query_chunk_size: int: query chunks size
kv_chunk_size: Optional[int]: key/value chunks size. if None: defaults to sqrt(key_tokens)
kv_chunk_size_min: Optional[int]: key/value minimum chunk size. only considered when kv_chunk_size is None. changes `sqrt(key_tokens)` into `max(sqrt(key_tokens), kv_chunk_size_min)`, to ensure our chunk sizes don't get too small (smaller chunks = more chunks = less concurrent work done).
use_checkpoint: bool: whether to use checkpointing (recommended True for training, False for inference)
Returns:
Output of shape `[batch * num_heads, query_tokens, channels_per_head]`.
"""
batch_x_heads, q_tokens, q_channels_per_head = query.shape
_, _, k_tokens = key_t.shape
scale = q_channels_per_head ** -0.5
kv_chunk_size = min(kv_chunk_size or int(math.sqrt(k_tokens)), k_tokens)
if kv_chunk_size_min is not None:
kv_chunk_size = max(kv_chunk_size, kv_chunk_size_min)
def get_query_chunk(chunk_idx: int) -> Tensor:
return dynamic_slice(
query,
(0, chunk_idx, 0),
(batch_x_heads, min(query_chunk_size, q_tokens), q_channels_per_head)
)
summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale, upcast_attention=upcast_attention)
summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk
compute_query_chunk_attn: ComputeQueryChunkAttn = partial(
_get_attention_scores_no_kv_chunking,
scale=scale,
upcast_attention=upcast_attention
) if k_tokens <= kv_chunk_size else (
# fast-path for when there's just 1 key-value chunk per query chunk (this is just sliced attention btw)
partial(
_query_chunk_attention,
kv_chunk_size=kv_chunk_size,
summarize_chunk=summarize_chunk,
)
)
if q_tokens <= query_chunk_size:
# fast-path for when there's just 1 query chunk
return compute_query_chunk_attn(
query=query,
key_t=key_t,
value=value,
)
# TODO: maybe we should use torch.empty_like(query) to allocate storage in-advance,
# and pass slices to be mutated, instead of torch.cat()ing the returned slices
res = torch.cat([
compute_query_chunk_attn(
query=get_query_chunk(i * query_chunk_size),
key_t=key_t,
value=value,
) for i in range(math.ceil(q_tokens / query_chunk_size))
], dim=1)
return res