You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1804 lines
83 KiB
1804 lines
83 KiB
""" |
|
wild mixture of |
|
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py |
|
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py |
|
https://github.com/CompVis/taming-transformers |
|
-- merci |
|
""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
# import pytorch_lightning as pl |
|
from torch.optim.lr_scheduler import LambdaLR |
|
from einops import rearrange, repeat |
|
from contextlib import contextmanager, nullcontext |
|
from functools import partial |
|
import itertools |
|
from tqdm import tqdm |
|
from torchvision.utils import make_grid |
|
# from pytorch_lightning.utilities.distributed import rank_zero_only |
|
from omegaconf import ListConfig |
|
|
|
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config |
|
from ldm.modules.ema import LitEma |
|
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution |
|
from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL |
|
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like |
|
from ldm.models.diffusion.ddim import DDIMSampler |
|
|
|
|
|
__conditioning_keys__ = {'concat': 'c_concat', |
|
'crossattn': 'c_crossattn', |
|
'adm': 'y'} |
|
|
|
|
|
def disabled_train(self, mode=True): |
|
"""Overwrite model.train with this function to make sure train/eval mode |
|
does not change anymore.""" |
|
return self |
|
|
|
|
|
def uniform_on_device(r1, r2, shape, device): |
|
return (r1 - r2) * torch.rand(*shape, device=device) + r2 |
|
|
|
# class DDPM(pl.LightningModule): |
|
class DDPM(torch.nn.Module): |
|
# classic DDPM with Gaussian diffusion, in image space |
|
def __init__(self, |
|
unet_config, |
|
timesteps=1000, |
|
beta_schedule="linear", |
|
loss_type="l2", |
|
ckpt_path=None, |
|
ignore_keys=[], |
|
load_only_unet=False, |
|
monitor="val/loss", |
|
use_ema=True, |
|
first_stage_key="image", |
|
image_size=256, |
|
channels=3, |
|
log_every_t=100, |
|
clip_denoised=True, |
|
linear_start=1e-4, |
|
linear_end=2e-2, |
|
cosine_s=8e-3, |
|
given_betas=None, |
|
original_elbo_weight=0., |
|
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta |
|
l_simple_weight=1., |
|
conditioning_key=None, |
|
parameterization="eps", # all assuming fixed variance schedules |
|
scheduler_config=None, |
|
use_positional_encodings=False, |
|
learn_logvar=False, |
|
logvar_init=0., |
|
make_it_fit=False, |
|
ucg_training=None, |
|
reset_ema=False, |
|
reset_num_ema_updates=False, |
|
): |
|
super().__init__() |
|
assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"' |
|
self.parameterization = parameterization |
|
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode") |
|
self.cond_stage_model = None |
|
self.clip_denoised = clip_denoised |
|
self.log_every_t = log_every_t |
|
self.first_stage_key = first_stage_key |
|
self.image_size = image_size # try conv? |
|
self.channels = channels |
|
self.use_positional_encodings = use_positional_encodings |
|
self.model = DiffusionWrapper(unet_config, conditioning_key) |
|
count_params(self.model, verbose=True) |
|
self.use_ema = use_ema |
|
if self.use_ema: |
|
self.model_ema = LitEma(self.model) |
|
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") |
|
|
|
self.use_scheduler = scheduler_config is not None |
|
if self.use_scheduler: |
|
self.scheduler_config = scheduler_config |
|
|
|
self.v_posterior = v_posterior |
|
self.original_elbo_weight = original_elbo_weight |
|
self.l_simple_weight = l_simple_weight |
|
|
|
if monitor is not None: |
|
self.monitor = monitor |
|
self.make_it_fit = make_it_fit |
|
if reset_ema: assert exists(ckpt_path) |
|
if ckpt_path is not None: |
|
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet) |
|
if reset_ema: |
|
assert self.use_ema |
|
print(f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.") |
|
self.model_ema = LitEma(self.model) |
|
if reset_num_ema_updates: |
|
print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ") |
|
assert self.use_ema |
|
self.model_ema.reset_num_updates() |
|
|
|
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps, |
|
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) |
|
|
|
self.loss_type = loss_type |
|
|
|
self.learn_logvar = learn_logvar |
|
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) |
|
if self.learn_logvar: |
|
self.logvar = nn.Parameter(self.logvar, requires_grad=True) |
|
|
|
self.ucg_training = ucg_training or dict() |
|
if self.ucg_training: |
|
self.ucg_prng = np.random.RandomState() |
|
|
|
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, |
|
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): |
|
if exists(given_betas): |
|
betas = given_betas |
|
else: |
|
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, |
|
cosine_s=cosine_s) |
|
alphas = 1. - betas |
|
alphas_cumprod = np.cumprod(alphas, axis=0) |
|
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) |
|
|
|
timesteps, = betas.shape |
|
self.num_timesteps = int(timesteps) |
|
self.linear_start = linear_start |
|
self.linear_end = linear_end |
|
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' |
|
|
|
to_torch = partial(torch.tensor, dtype=torch.float32) |
|
|
|
self.register_buffer('betas', to_torch(betas)) |
|
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) |
|
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) |
|
|
|
# calculations for diffusion q(x_t | x_{t-1}) and others |
|
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) |
|
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) |
|
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) |
|
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) |
|
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) |
|
|
|
# calculations for posterior q(x_{t-1} | x_t, x_0) |
|
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / ( |
|
1. - alphas_cumprod) + self.v_posterior * betas |
|
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) |
|
self.register_buffer('posterior_variance', to_torch(posterior_variance)) |
|
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain |
|
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) |
|
self.register_buffer('posterior_mean_coef1', to_torch( |
|
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) |
|
self.register_buffer('posterior_mean_coef2', to_torch( |
|
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) |
|
|
|
if self.parameterization == "eps": |
|
lvlb_weights = self.betas ** 2 / ( |
|
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)) |
|
elif self.parameterization == "x0": |
|
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod)) |
|
elif self.parameterization == "v": |
|
lvlb_weights = torch.ones_like(self.betas ** 2 / ( |
|
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))) |
|
else: |
|
raise NotImplementedError("mu not supported") |
|
lvlb_weights[0] = lvlb_weights[1] |
|
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False) |
|
assert not torch.isnan(self.lvlb_weights).all() |
|
|
|
@contextmanager |
|
def ema_scope(self, context=None): |
|
if self.use_ema: |
|
self.model_ema.store(self.model.parameters()) |
|
self.model_ema.copy_to(self.model) |
|
if context is not None: |
|
print(f"{context}: Switched to EMA weights") |
|
try: |
|
yield None |
|
finally: |
|
if self.use_ema: |
|
self.model_ema.restore(self.model.parameters()) |
|
if context is not None: |
|
print(f"{context}: Restored training weights") |
|
|
|
@torch.no_grad() |
|
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): |
|
sd = torch.load(path, map_location="cpu") |
|
if "state_dict" in list(sd.keys()): |
|
sd = sd["state_dict"] |
|
keys = list(sd.keys()) |
|
for k in keys: |
|
for ik in ignore_keys: |
|
if k.startswith(ik): |
|
print("Deleting key {} from state_dict.".format(k)) |
|
del sd[k] |
|
if self.make_it_fit: |
|
n_params = len([name for name, _ in |
|
itertools.chain(self.named_parameters(), |
|
self.named_buffers())]) |
|
for name, param in tqdm( |
|
itertools.chain(self.named_parameters(), |
|
self.named_buffers()), |
|
desc="Fitting old weights to new weights", |
|
total=n_params |
|
): |
|
if not name in sd: |
|
continue |
|
old_shape = sd[name].shape |
|
new_shape = param.shape |
|
assert len(old_shape) == len(new_shape) |
|
if len(new_shape) > 2: |
|
# we only modify first two axes |
|
assert new_shape[2:] == old_shape[2:] |
|
# assumes first axis corresponds to output dim |
|
if not new_shape == old_shape: |
|
new_param = param.clone() |
|
old_param = sd[name] |
|
if len(new_shape) == 1: |
|
for i in range(new_param.shape[0]): |
|
new_param[i] = old_param[i % old_shape[0]] |
|
elif len(new_shape) >= 2: |
|
for i in range(new_param.shape[0]): |
|
for j in range(new_param.shape[1]): |
|
new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]] |
|
|
|
n_used_old = torch.ones(old_shape[1]) |
|
for j in range(new_param.shape[1]): |
|
n_used_old[j % old_shape[1]] += 1 |
|
n_used_new = torch.zeros(new_shape[1]) |
|
for j in range(new_param.shape[1]): |
|
n_used_new[j] = n_used_old[j % old_shape[1]] |
|
|
|
n_used_new = n_used_new[None, :] |
|
while len(n_used_new.shape) < len(new_shape): |
|
n_used_new = n_used_new.unsqueeze(-1) |
|
new_param /= n_used_new |
|
|
|
sd[name] = new_param |
|
|
|
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( |
|
sd, strict=False) |
|
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") |
|
if len(missing) > 0: |
|
print(f"Missing Keys:\n {missing}") |
|
if len(unexpected) > 0: |
|
print(f"\nUnexpected Keys:\n {unexpected}") |
|
|
|
def q_mean_variance(self, x_start, t): |
|
""" |
|
Get the distribution q(x_t | x_0). |
|
:param x_start: the [N x C x ...] tensor of noiseless inputs. |
|
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. |
|
:return: A tuple (mean, variance, log_variance), all of x_start's shape. |
|
""" |
|
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start) |
|
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) |
|
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) |
|
return mean, variance, log_variance |
|
|
|
def predict_start_from_noise(self, x_t, t, noise): |
|
return ( |
|
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - |
|
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise |
|
) |
|
|
|
def predict_start_from_z_and_v(self, x_t, t, v): |
|
# self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) |
|
# self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) |
|
return ( |
|
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t - |
|
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v |
|
) |
|
|
|
def predict_eps_from_z_and_v(self, x_t, t, v): |
|
return ( |
|
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v + |
|
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t |
|
) |
|
|
|
def q_posterior(self, x_start, x_t, t): |
|
posterior_mean = ( |
|
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + |
|
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t |
|
) |
|
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) |
|
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) |
|
return posterior_mean, posterior_variance, posterior_log_variance_clipped |
|
|
|
def p_mean_variance(self, x, t, clip_denoised: bool): |
|
model_out = self.model(x, t) |
|
if self.parameterization == "eps": |
|
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) |
|
elif self.parameterization == "x0": |
|
x_recon = model_out |
|
if clip_denoised: |
|
x_recon.clamp_(-1., 1.) |
|
|
|
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) |
|
return model_mean, posterior_variance, posterior_log_variance |
|
|
|
@torch.no_grad() |
|
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): |
|
b, *_, device = *x.shape, x.device |
|
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised) |
|
noise = noise_like(x.shape, device, repeat_noise) |
|
# no noise when t == 0 |
|
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) |
|
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise |
|
|
|
@torch.no_grad() |
|
def p_sample_loop(self, shape, return_intermediates=False): |
|
device = self.betas.device |
|
b = shape[0] |
|
img = torch.randn(shape, device=device) |
|
intermediates = [img] |
|
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps): |
|
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long), |
|
clip_denoised=self.clip_denoised) |
|
if i % self.log_every_t == 0 or i == self.num_timesteps - 1: |
|
intermediates.append(img) |
|
if return_intermediates: |
|
return img, intermediates |
|
return img |
|
|
|
@torch.no_grad() |
|
def sample(self, batch_size=16, return_intermediates=False): |
|
image_size = self.image_size |
|
channels = self.channels |
|
return self.p_sample_loop((batch_size, channels, image_size, image_size), |
|
return_intermediates=return_intermediates) |
|
|
|
def q_sample(self, x_start, t, noise=None): |
|
noise = default(noise, lambda: torch.randn_like(x_start)) |
|
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + |
|
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) |
|
|
|
def get_v(self, x, noise, t): |
|
return ( |
|
extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise - |
|
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x |
|
) |
|
|
|
def get_loss(self, pred, target, mean=True): |
|
if self.loss_type == 'l1': |
|
loss = (target - pred).abs() |
|
if mean: |
|
loss = loss.mean() |
|
elif self.loss_type == 'l2': |
|
if mean: |
|
loss = torch.nn.functional.mse_loss(target, pred) |
|
else: |
|
loss = torch.nn.functional.mse_loss(target, pred, reduction='none') |
|
else: |
|
raise NotImplementedError("unknown loss type '{loss_type}'") |
|
|
|
return loss |
|
|
|
def p_losses(self, x_start, t, noise=None): |
|
noise = default(noise, lambda: torch.randn_like(x_start)) |
|
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) |
|
model_out = self.model(x_noisy, t) |
|
|
|
loss_dict = {} |
|
if self.parameterization == "eps": |
|
target = noise |
|
elif self.parameterization == "x0": |
|
target = x_start |
|
elif self.parameterization == "v": |
|
target = self.get_v(x_start, noise, t) |
|
else: |
|
raise NotImplementedError(f"Parameterization {self.parameterization} not yet supported") |
|
|
|
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3]) |
|
|
|
log_prefix = 'train' if self.training else 'val' |
|
|
|
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()}) |
|
loss_simple = loss.mean() * self.l_simple_weight |
|
|
|
loss_vlb = (self.lvlb_weights[t] * loss).mean() |
|
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb}) |
|
|
|
loss = loss_simple + self.original_elbo_weight * loss_vlb |
|
|
|
loss_dict.update({f'{log_prefix}/loss': loss}) |
|
|
|
return loss, loss_dict |
|
|
|
def forward(self, x, *args, **kwargs): |
|
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size |
|
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}' |
|
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() |
|
return self.p_losses(x, t, *args, **kwargs) |
|
|
|
def get_input(self, batch, k): |
|
x = batch[k] |
|
if len(x.shape) == 3: |
|
x = x[..., None] |
|
x = rearrange(x, 'b h w c -> b c h w') |
|
x = x.to(memory_format=torch.contiguous_format).float() |
|
return x |
|
|
|
def shared_step(self, batch): |
|
x = self.get_input(batch, self.first_stage_key) |
|
loss, loss_dict = self(x) |
|
return loss, loss_dict |
|
|
|
def training_step(self, batch, batch_idx): |
|
for k in self.ucg_training: |
|
p = self.ucg_training[k]["p"] |
|
val = self.ucg_training[k]["val"] |
|
if val is None: |
|
val = "" |
|
for i in range(len(batch[k])): |
|
if self.ucg_prng.choice(2, p=[1 - p, p]): |
|
batch[k][i] = val |
|
|
|
loss, loss_dict = self.shared_step(batch) |
|
|
|
self.log_dict(loss_dict, prog_bar=True, |
|
logger=True, on_step=True, on_epoch=True) |
|
|
|
self.log("global_step", self.global_step, |
|
prog_bar=True, logger=True, on_step=True, on_epoch=False) |
|
|
|
if self.use_scheduler: |
|
lr = self.optimizers().param_groups[0]['lr'] |
|
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) |
|
|
|
return loss |
|
|
|
@torch.no_grad() |
|
def validation_step(self, batch, batch_idx): |
|
_, loss_dict_no_ema = self.shared_step(batch) |
|
with self.ema_scope(): |
|
_, loss_dict_ema = self.shared_step(batch) |
|
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema} |
|
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) |
|
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) |
|
|
|
def on_train_batch_end(self, *args, **kwargs): |
|
if self.use_ema: |
|
self.model_ema(self.model) |
|
|
|
def _get_rows_from_list(self, samples): |
|
n_imgs_per_row = len(samples) |
|
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w') |
|
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') |
|
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) |
|
return denoise_grid |
|
|
|
@torch.no_grad() |
|
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): |
|
log = dict() |
|
x = self.get_input(batch, self.first_stage_key) |
|
N = min(x.shape[0], N) |
|
n_row = min(x.shape[0], n_row) |
|
x = x.to(self.device)[:N] |
|
log["inputs"] = x |
|
|
|
# get diffusion row |
|
diffusion_row = list() |
|
x_start = x[:n_row] |
|
|
|
for t in range(self.num_timesteps): |
|
if t % self.log_every_t == 0 or t == self.num_timesteps - 1: |
|
t = repeat(torch.tensor([t]), '1 -> b', b=n_row) |
|
t = t.to(self.device).long() |
|
noise = torch.randn_like(x_start) |
|
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) |
|
diffusion_row.append(x_noisy) |
|
|
|
log["diffusion_row"] = self._get_rows_from_list(diffusion_row) |
|
|
|
if sample: |
|
# get denoise row |
|
with self.ema_scope("Plotting"): |
|
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True) |
|
|
|
log["samples"] = samples |
|
log["denoise_row"] = self._get_rows_from_list(denoise_row) |
|
|
|
if return_keys: |
|
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: |
|
return log |
|
else: |
|
return {key: log[key] for key in return_keys} |
|
return log |
|
|
|
def configure_optimizers(self): |
|
lr = self.learning_rate |
|
params = list(self.model.parameters()) |
|
if self.learn_logvar: |
|
params = params + [self.logvar] |
|
opt = torch.optim.AdamW(params, lr=lr) |
|
return opt |
|
|
|
|
|
class LatentDiffusion(DDPM): |
|
"""main class""" |
|
|
|
def __init__(self, |
|
first_stage_config={}, |
|
cond_stage_config={}, |
|
num_timesteps_cond=None, |
|
cond_stage_key="image", |
|
cond_stage_trainable=False, |
|
concat_mode=True, |
|
cond_stage_forward=None, |
|
conditioning_key=None, |
|
scale_factor=1.0, |
|
scale_by_std=False, |
|
force_null_conditioning=False, |
|
*args, **kwargs): |
|
self.force_null_conditioning = force_null_conditioning |
|
self.num_timesteps_cond = default(num_timesteps_cond, 1) |
|
self.scale_by_std = scale_by_std |
|
assert self.num_timesteps_cond <= kwargs['timesteps'] |
|
# for backwards compatibility after implementation of DiffusionWrapper |
|
if conditioning_key is None: |
|
conditioning_key = 'concat' if concat_mode else 'crossattn' |
|
if cond_stage_config == '__is_unconditional__' and not self.force_null_conditioning: |
|
conditioning_key = None |
|
ckpt_path = kwargs.pop("ckpt_path", None) |
|
reset_ema = kwargs.pop("reset_ema", False) |
|
reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False) |
|
ignore_keys = kwargs.pop("ignore_keys", []) |
|
super().__init__(conditioning_key=conditioning_key, *args, **kwargs) |
|
self.concat_mode = concat_mode |
|
self.cond_stage_trainable = cond_stage_trainable |
|
self.cond_stage_key = cond_stage_key |
|
try: |
|
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 |
|
except: |
|
self.num_downs = 0 |
|
if not scale_by_std: |
|
self.scale_factor = scale_factor |
|
else: |
|
self.register_buffer('scale_factor', torch.tensor(scale_factor)) |
|
|
|
# self.instantiate_first_stage(first_stage_config) |
|
# self.instantiate_cond_stage(cond_stage_config) |
|
|
|
self.cond_stage_forward = cond_stage_forward |
|
self.clip_denoised = False |
|
self.bbox_tokenizer = None |
|
|
|
self.restarted_from_ckpt = False |
|
if ckpt_path is not None: |
|
self.init_from_ckpt(ckpt_path, ignore_keys) |
|
self.restarted_from_ckpt = True |
|
if reset_ema: |
|
assert self.use_ema |
|
print( |
|
f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.") |
|
self.model_ema = LitEma(self.model) |
|
if reset_num_ema_updates: |
|
print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ") |
|
assert self.use_ema |
|
self.model_ema.reset_num_updates() |
|
|
|
def make_cond_schedule(self, ): |
|
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long) |
|
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long() |
|
self.cond_ids[:self.num_timesteps_cond] = ids |
|
|
|
# @rank_zero_only |
|
@torch.no_grad() |
|
def on_train_batch_start(self, batch, batch_idx, dataloader_idx): |
|
# only for very first batch |
|
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt: |
|
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously' |
|
# set rescale weight to 1./std of encodings |
|
print("### USING STD-RESCALING ###") |
|
x = super().get_input(batch, self.first_stage_key) |
|
x = x.to(self.device) |
|
encoder_posterior = self.encode_first_stage(x) |
|
z = self.get_first_stage_encoding(encoder_posterior).detach() |
|
del self.scale_factor |
|
self.register_buffer('scale_factor', 1. / z.flatten().std()) |
|
print(f"setting self.scale_factor to {self.scale_factor}") |
|
print("### USING STD-RESCALING ###") |
|
|
|
def register_schedule(self, |
|
given_betas=None, beta_schedule="linear", timesteps=1000, |
|
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): |
|
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s) |
|
|
|
self.shorten_cond_schedule = self.num_timesteps_cond > 1 |
|
if self.shorten_cond_schedule: |
|
self.make_cond_schedule() |
|
|
|
def instantiate_first_stage(self, config): |
|
model = instantiate_from_config(config) |
|
self.first_stage_model = model.eval() |
|
self.first_stage_model.train = disabled_train |
|
for param in self.first_stage_model.parameters(): |
|
param.requires_grad = False |
|
|
|
def instantiate_cond_stage(self, config): |
|
if not self.cond_stage_trainable: |
|
if config == "__is_first_stage__": |
|
print("Using first stage also as cond stage.") |
|
self.cond_stage_model = self.first_stage_model |
|
elif config == "__is_unconditional__": |
|
print(f"Training {self.__class__.__name__} as an unconditional model.") |
|
self.cond_stage_model = None |
|
# self.be_unconditional = True |
|
else: |
|
model = instantiate_from_config(config) |
|
self.cond_stage_model = model.eval() |
|
self.cond_stage_model.train = disabled_train |
|
for param in self.cond_stage_model.parameters(): |
|
param.requires_grad = False |
|
else: |
|
assert config != '__is_first_stage__' |
|
assert config != '__is_unconditional__' |
|
model = instantiate_from_config(config) |
|
self.cond_stage_model = model |
|
|
|
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False): |
|
denoise_row = [] |
|
for zd in tqdm(samples, desc=desc): |
|
denoise_row.append(self.decode_first_stage(zd.to(self.device), |
|
force_not_quantize=force_no_decoder_quantization)) |
|
n_imgs_per_row = len(denoise_row) |
|
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W |
|
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w') |
|
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') |
|
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) |
|
return denoise_grid |
|
|
|
def get_first_stage_encoding(self, encoder_posterior): |
|
if isinstance(encoder_posterior, DiagonalGaussianDistribution): |
|
z = encoder_posterior.sample() |
|
elif isinstance(encoder_posterior, torch.Tensor): |
|
z = encoder_posterior |
|
else: |
|
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented") |
|
return self.scale_factor * z |
|
|
|
def get_learned_conditioning(self, c): |
|
if self.cond_stage_forward is None: |
|
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): |
|
c = self.cond_stage_model.encode(c) |
|
if isinstance(c, DiagonalGaussianDistribution): |
|
c = c.mode() |
|
else: |
|
c = self.cond_stage_model(c) |
|
else: |
|
assert hasattr(self.cond_stage_model, self.cond_stage_forward) |
|
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) |
|
return c |
|
|
|
def meshgrid(self, h, w): |
|
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1) |
|
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1) |
|
|
|
arr = torch.cat([y, x], dim=-1) |
|
return arr |
|
|
|
def delta_border(self, h, w): |
|
""" |
|
:param h: height |
|
:param w: width |
|
:return: normalized distance to image border, |
|
wtith min distance = 0 at border and max dist = 0.5 at image center |
|
""" |
|
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2) |
|
arr = self.meshgrid(h, w) / lower_right_corner |
|
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0] |
|
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0] |
|
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0] |
|
return edge_dist |
|
|
|
def get_weighting(self, h, w, Ly, Lx, device): |
|
weighting = self.delta_border(h, w) |
|
weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"], |
|
self.split_input_params["clip_max_weight"], ) |
|
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device) |
|
|
|
if self.split_input_params["tie_braker"]: |
|
L_weighting = self.delta_border(Ly, Lx) |
|
L_weighting = torch.clip(L_weighting, |
|
self.split_input_params["clip_min_tie_weight"], |
|
self.split_input_params["clip_max_tie_weight"]) |
|
|
|
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device) |
|
weighting = weighting * L_weighting |
|
return weighting |
|
|
|
def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code |
|
""" |
|
:param x: img of size (bs, c, h, w) |
|
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1]) |
|
""" |
|
bs, nc, h, w = x.shape |
|
|
|
# number of crops in image |
|
Ly = (h - kernel_size[0]) // stride[0] + 1 |
|
Lx = (w - kernel_size[1]) // stride[1] + 1 |
|
|
|
if uf == 1 and df == 1: |
|
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) |
|
unfold = torch.nn.Unfold(**fold_params) |
|
|
|
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params) |
|
|
|
weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype) |
|
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap |
|
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx)) |
|
|
|
elif uf > 1 and df == 1: |
|
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) |
|
unfold = torch.nn.Unfold(**fold_params) |
|
|
|
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf), |
|
dilation=1, padding=0, |
|
stride=(stride[0] * uf, stride[1] * uf)) |
|
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2) |
|
|
|
weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype) |
|
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap |
|
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)) |
|
|
|
elif df > 1 and uf == 1: |
|
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) |
|
unfold = torch.nn.Unfold(**fold_params) |
|
|
|
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df), |
|
dilation=1, padding=0, |
|
stride=(stride[0] // df, stride[1] // df)) |
|
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2) |
|
|
|
weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype) |
|
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap |
|
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx)) |
|
|
|
else: |
|
raise NotImplementedError |
|
|
|
return fold, unfold, normalization, weighting |
|
|
|
@torch.no_grad() |
|
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False, |
|
cond_key=None, return_original_cond=False, bs=None, return_x=False): |
|
x = super().get_input(batch, k) |
|
if bs is not None: |
|
x = x[:bs] |
|
x = x.to(self.device) |
|
encoder_posterior = self.encode_first_stage(x) |
|
z = self.get_first_stage_encoding(encoder_posterior).detach() |
|
|
|
if self.model.conditioning_key is not None and not self.force_null_conditioning: |
|
if cond_key is None: |
|
cond_key = self.cond_stage_key |
|
if cond_key != self.first_stage_key: |
|
if cond_key in ['caption', 'coordinates_bbox', "txt"]: |
|
xc = batch[cond_key] |
|
elif cond_key in ['class_label', 'cls']: |
|
xc = batch |
|
else: |
|
xc = super().get_input(batch, cond_key).to(self.device) |
|
else: |
|
xc = x |
|
if not self.cond_stage_trainable or force_c_encode: |
|
if isinstance(xc, dict) or isinstance(xc, list): |
|
c = self.get_learned_conditioning(xc) |
|
else: |
|
c = self.get_learned_conditioning(xc.to(self.device)) |
|
else: |
|
c = xc |
|
if bs is not None: |
|
c = c[:bs] |
|
|
|
if self.use_positional_encodings: |
|
pos_x, pos_y = self.compute_latent_shifts(batch) |
|
ckey = __conditioning_keys__[self.model.conditioning_key] |
|
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y} |
|
|
|
else: |
|
c = None |
|
xc = None |
|
if self.use_positional_encodings: |
|
pos_x, pos_y = self.compute_latent_shifts(batch) |
|
c = {'pos_x': pos_x, 'pos_y': pos_y} |
|
out = [z, c] |
|
if return_first_stage_outputs: |
|
xrec = self.decode_first_stage(z) |
|
out.extend([x, xrec]) |
|
if return_x: |
|
out.extend([x]) |
|
if return_original_cond: |
|
out.append(xc) |
|
return out |
|
|
|
@torch.no_grad() |
|
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): |
|
if predict_cids: |
|
if z.dim() == 4: |
|
z = torch.argmax(z.exp(), dim=1).long() |
|
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) |
|
z = rearrange(z, 'b h w c -> b c h w').contiguous() |
|
|
|
z = 1. / self.scale_factor * z |
|
return self.first_stage_model.decode(z) |
|
|
|
@torch.no_grad() |
|
def encode_first_stage(self, x): |
|
return self.first_stage_model.encode(x) |
|
|
|
def shared_step(self, batch, **kwargs): |
|
x, c = self.get_input(batch, self.first_stage_key) |
|
loss = self(x, c) |
|
return loss |
|
|
|
def forward(self, x, c, *args, **kwargs): |
|
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() |
|
if self.model.conditioning_key is not None: |
|
assert c is not None |
|
if self.cond_stage_trainable: |
|
c = self.get_learned_conditioning(c) |
|
if self.shorten_cond_schedule: # TODO: drop this option |
|
tc = self.cond_ids[t].to(self.device) |
|
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) |
|
return self.p_losses(x, c, t, *args, **kwargs) |
|
|
|
def apply_model(self, x_noisy, t, cond, return_ids=False): |
|
if isinstance(cond, dict): |
|
# hybrid case, cond is expected to be a dict |
|
pass |
|
else: |
|
if not isinstance(cond, list): |
|
cond = [cond] |
|
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn' |
|
cond = {key: cond} |
|
|
|
x_recon = self.model(x_noisy, t, **cond) |
|
|
|
if isinstance(x_recon, tuple) and not return_ids: |
|
return x_recon[0] |
|
else: |
|
return x_recon |
|
|
|
def _predict_eps_from_xstart(self, x_t, t, pred_xstart): |
|
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \ |
|
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) |
|
|
|
def _prior_bpd(self, x_start): |
|
""" |
|
Get the prior KL term for the variational lower-bound, measured in |
|
bits-per-dim. |
|
This term can't be optimized, as it only depends on the encoder. |
|
:param x_start: the [N x C x ...] tensor of inputs. |
|
:return: a batch of [N] KL values (in bits), one per batch element. |
|
""" |
|
batch_size = x_start.shape[0] |
|
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) |
|
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) |
|
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) |
|
return mean_flat(kl_prior) / np.log(2.0) |
|
|
|
def p_losses(self, x_start, cond, t, noise=None): |
|
noise = default(noise, lambda: torch.randn_like(x_start)) |
|
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) |
|
model_output = self.apply_model(x_noisy, t, cond) |
|
|
|
loss_dict = {} |
|
prefix = 'train' if self.training else 'val' |
|
|
|
if self.parameterization == "x0": |
|
target = x_start |
|
elif self.parameterization == "eps": |
|
target = noise |
|
elif self.parameterization == "v": |
|
target = self.get_v(x_start, noise, t) |
|
else: |
|
raise NotImplementedError() |
|
|
|
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3]) |
|
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()}) |
|
|
|
logvar_t = self.logvar[t].to(self.device) |
|
loss = loss_simple / torch.exp(logvar_t) + logvar_t |
|
# loss = loss_simple / torch.exp(self.logvar) + self.logvar |
|
if self.learn_logvar: |
|
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()}) |
|
loss_dict.update({'logvar': self.logvar.data.mean()}) |
|
|
|
loss = self.l_simple_weight * loss.mean() |
|
|
|
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3)) |
|
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() |
|
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb}) |
|
loss += (self.original_elbo_weight * loss_vlb) |
|
loss_dict.update({f'{prefix}/loss': loss}) |
|
|
|
return loss, loss_dict |
|
|
|
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False, |
|
return_x0=False, score_corrector=None, corrector_kwargs=None): |
|
t_in = t |
|
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) |
|
|
|
if score_corrector is not None: |
|
assert self.parameterization == "eps" |
|
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs) |
|
|
|
if return_codebook_ids: |
|
model_out, logits = model_out |
|
|
|
if self.parameterization == "eps": |
|
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) |
|
elif self.parameterization == "x0": |
|
x_recon = model_out |
|
else: |
|
raise NotImplementedError() |
|
|
|
if clip_denoised: |
|
x_recon.clamp_(-1., 1.) |
|
if quantize_denoised: |
|
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) |
|
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) |
|
if return_codebook_ids: |
|
return model_mean, posterior_variance, posterior_log_variance, logits |
|
elif return_x0: |
|
return model_mean, posterior_variance, posterior_log_variance, x_recon |
|
else: |
|
return model_mean, posterior_variance, posterior_log_variance |
|
|
|
@torch.no_grad() |
|
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, |
|
return_codebook_ids=False, quantize_denoised=False, return_x0=False, |
|
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None): |
|
b, *_, device = *x.shape, x.device |
|
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, |
|
return_codebook_ids=return_codebook_ids, |
|
quantize_denoised=quantize_denoised, |
|
return_x0=return_x0, |
|
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) |
|
if return_codebook_ids: |
|
raise DeprecationWarning("Support dropped.") |
|
model_mean, _, model_log_variance, logits = outputs |
|
elif return_x0: |
|
model_mean, _, model_log_variance, x0 = outputs |
|
else: |
|
model_mean, _, model_log_variance = outputs |
|
|
|
noise = noise_like(x.shape, device, repeat_noise) * temperature |
|
if noise_dropout > 0.: |
|
noise = torch.nn.functional.dropout(noise, p=noise_dropout) |
|
# no noise when t == 0 |
|
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) |
|
|
|
if return_codebook_ids: |
|
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1) |
|
if return_x0: |
|
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0 |
|
else: |
|
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise |
|
|
|
@torch.no_grad() |
|
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False, |
|
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0., |
|
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None, |
|
log_every_t=None): |
|
if not log_every_t: |
|
log_every_t = self.log_every_t |
|
timesteps = self.num_timesteps |
|
if batch_size is not None: |
|
b = batch_size if batch_size is not None else shape[0] |
|
shape = [batch_size] + list(shape) |
|
else: |
|
b = batch_size = shape[0] |
|
if x_T is None: |
|
img = torch.randn(shape, device=self.device) |
|
else: |
|
img = x_T |
|
intermediates = [] |
|
if cond is not None: |
|
if isinstance(cond, dict): |
|
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else |
|
list(map(lambda x: x[:batch_size], cond[key])) for key in cond} |
|
else: |
|
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] |
|
|
|
if start_T is not None: |
|
timesteps = min(timesteps, start_T) |
|
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation', |
|
total=timesteps) if verbose else reversed( |
|
range(0, timesteps)) |
|
if type(temperature) == float: |
|
temperature = [temperature] * timesteps |
|
|
|
for i in iterator: |
|
ts = torch.full((b,), i, device=self.device, dtype=torch.long) |
|
if self.shorten_cond_schedule: |
|
assert self.model.conditioning_key != 'hybrid' |
|
tc = self.cond_ids[ts].to(cond.device) |
|
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) |
|
|
|
img, x0_partial = self.p_sample(img, cond, ts, |
|
clip_denoised=self.clip_denoised, |
|
quantize_denoised=quantize_denoised, return_x0=True, |
|
temperature=temperature[i], noise_dropout=noise_dropout, |
|
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) |
|
if mask is not None: |
|
assert x0 is not None |
|
img_orig = self.q_sample(x0, ts) |
|
img = img_orig * mask + (1. - mask) * img |
|
|
|
if i % log_every_t == 0 or i == timesteps - 1: |
|
intermediates.append(x0_partial) |
|
if callback: callback(i) |
|
if img_callback: img_callback(img, i) |
|
return img, intermediates |
|
|
|
@torch.no_grad() |
|
def p_sample_loop(self, cond, shape, return_intermediates=False, |
|
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False, |
|
mask=None, x0=None, img_callback=None, start_T=None, |
|
log_every_t=None): |
|
|
|
if not log_every_t: |
|
log_every_t = self.log_every_t |
|
device = self.betas.device |
|
b = shape[0] |
|
if x_T is None: |
|
img = torch.randn(shape, device=device) |
|
else: |
|
img = x_T |
|
|
|
intermediates = [img] |
|
if timesteps is None: |
|
timesteps = self.num_timesteps |
|
|
|
if start_T is not None: |
|
timesteps = min(timesteps, start_T) |
|
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed( |
|
range(0, timesteps)) |
|
|
|
if mask is not None: |
|
assert x0 is not None |
|
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match |
|
|
|
for i in iterator: |
|
ts = torch.full((b,), i, device=device, dtype=torch.long) |
|
if self.shorten_cond_schedule: |
|
assert self.model.conditioning_key != 'hybrid' |
|
tc = self.cond_ids[ts].to(cond.device) |
|
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) |
|
|
|
img = self.p_sample(img, cond, ts, |
|
clip_denoised=self.clip_denoised, |
|
quantize_denoised=quantize_denoised) |
|
if mask is not None: |
|
img_orig = self.q_sample(x0, ts) |
|
img = img_orig * mask + (1. - mask) * img |
|
|
|
if i % log_every_t == 0 or i == timesteps - 1: |
|
intermediates.append(img) |
|
if callback: callback(i) |
|
if img_callback: img_callback(img, i) |
|
|
|
if return_intermediates: |
|
return img, intermediates |
|
return img |
|
|
|
@torch.no_grad() |
|
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None, |
|
verbose=True, timesteps=None, quantize_denoised=False, |
|
mask=None, x0=None, shape=None, **kwargs): |
|
if shape is None: |
|
shape = (batch_size, self.channels, self.image_size, self.image_size) |
|
if cond is not None: |
|
if isinstance(cond, dict): |
|
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else |
|
list(map(lambda x: x[:batch_size], cond[key])) for key in cond} |
|
else: |
|
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] |
|
return self.p_sample_loop(cond, |
|
shape, |
|
return_intermediates=return_intermediates, x_T=x_T, |
|
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised, |
|
mask=mask, x0=x0) |
|
|
|
@torch.no_grad() |
|
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs): |
|
if ddim: |
|
ddim_sampler = DDIMSampler(self) |
|
shape = (self.channels, self.image_size, self.image_size) |
|
samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, |
|
shape, cond, verbose=False, **kwargs) |
|
|
|
else: |
|
samples, intermediates = self.sample(cond=cond, batch_size=batch_size, |
|
return_intermediates=True, **kwargs) |
|
|
|
return samples, intermediates |
|
|
|
@torch.no_grad() |
|
def get_unconditional_conditioning(self, batch_size, null_label=None): |
|
if null_label is not None: |
|
xc = null_label |
|
if isinstance(xc, ListConfig): |
|
xc = list(xc) |
|
if isinstance(xc, dict) or isinstance(xc, list): |
|
c = self.get_learned_conditioning(xc) |
|
else: |
|
if hasattr(xc, "to"): |
|
xc = xc.to(self.device) |
|
c = self.get_learned_conditioning(xc) |
|
else: |
|
if self.cond_stage_key in ["class_label", "cls"]: |
|
xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device) |
|
return self.get_learned_conditioning(xc) |
|
else: |
|
raise NotImplementedError("todo") |
|
if isinstance(c, list): # in case the encoder gives us a list |
|
for i in range(len(c)): |
|
c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device) |
|
else: |
|
c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device) |
|
return c |
|
|
|
@torch.no_grad() |
|
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=50, ddim_eta=0., return_keys=None, |
|
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True, |
|
plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None, |
|
use_ema_scope=True, |
|
**kwargs): |
|
ema_scope = self.ema_scope if use_ema_scope else nullcontext |
|
use_ddim = ddim_steps is not None |
|
|
|
log = dict() |
|
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, |
|
return_first_stage_outputs=True, |
|
force_c_encode=True, |
|
return_original_cond=True, |
|
bs=N) |
|
N = min(x.shape[0], N) |
|
n_row = min(x.shape[0], n_row) |
|
log["inputs"] = x |
|
log["reconstruction"] = xrec |
|
if self.model.conditioning_key is not None: |
|
if hasattr(self.cond_stage_model, "decode"): |
|
xc = self.cond_stage_model.decode(c) |
|
log["conditioning"] = xc |
|
elif self.cond_stage_key in ["caption", "txt"]: |
|
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25) |
|
log["conditioning"] = xc |
|
elif self.cond_stage_key in ['class_label', "cls"]: |
|
try: |
|
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25) |
|
log['conditioning'] = xc |
|
except KeyError: |
|
# probably no "human_label" in batch |
|
pass |
|
elif isimage(xc): |
|
log["conditioning"] = xc |
|
if ismap(xc): |
|
log["original_conditioning"] = self.to_rgb(xc) |
|
|
|
if plot_diffusion_rows: |
|
# get diffusion row |
|
diffusion_row = list() |
|
z_start = z[:n_row] |
|
for t in range(self.num_timesteps): |
|
if t % self.log_every_t == 0 or t == self.num_timesteps - 1: |
|
t = repeat(torch.tensor([t]), '1 -> b', b=n_row) |
|
t = t.to(self.device).long() |
|
noise = torch.randn_like(z_start) |
|
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) |
|
diffusion_row.append(self.decode_first_stage(z_noisy)) |
|
|
|
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W |
|
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') |
|
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') |
|
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) |
|
log["diffusion_row"] = diffusion_grid |
|
|
|
if sample: |
|
# get denoise row |
|
with ema_scope("Sampling"): |
|
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, |
|
ddim_steps=ddim_steps, eta=ddim_eta) |
|
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) |
|
x_samples = self.decode_first_stage(samples) |
|
log["samples"] = x_samples |
|
if plot_denoise_rows: |
|
denoise_grid = self._get_denoise_row_from_list(z_denoise_row) |
|
log["denoise_row"] = denoise_grid |
|
|
|
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance( |
|
self.first_stage_model, IdentityFirstStage): |
|
# also display when quantizing x0 while sampling |
|
with ema_scope("Plotting Quantized Denoised"): |
|
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, |
|
ddim_steps=ddim_steps, eta=ddim_eta, |
|
quantize_denoised=True) |
|
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True, |
|
# quantize_denoised=True) |
|
x_samples = self.decode_first_stage(samples.to(self.device)) |
|
log["samples_x0_quantized"] = x_samples |
|
|
|
if unconditional_guidance_scale > 1.0: |
|
uc = self.get_unconditional_conditioning(N, unconditional_guidance_label) |
|
if self.model.conditioning_key == "crossattn-adm": |
|
uc = {"c_crossattn": [uc], "c_adm": c["c_adm"]} |
|
with ema_scope("Sampling with classifier-free guidance"): |
|
samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, |
|
ddim_steps=ddim_steps, eta=ddim_eta, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=uc, |
|
) |
|
x_samples_cfg = self.decode_first_stage(samples_cfg) |
|
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg |
|
|
|
if inpaint: |
|
# make a simple center square |
|
b, h, w = z.shape[0], z.shape[2], z.shape[3] |
|
mask = torch.ones(N, h, w).to(self.device) |
|
# zeros will be filled in |
|
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. |
|
mask = mask[:, None, ...] |
|
with ema_scope("Plotting Inpaint"): |
|
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta, |
|
ddim_steps=ddim_steps, x0=z[:N], mask=mask) |
|
x_samples = self.decode_first_stage(samples.to(self.device)) |
|
log["samples_inpainting"] = x_samples |
|
log["mask"] = mask |
|
|
|
# outpaint |
|
mask = 1. - mask |
|
with ema_scope("Plotting Outpaint"): |
|
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta, |
|
ddim_steps=ddim_steps, x0=z[:N], mask=mask) |
|
x_samples = self.decode_first_stage(samples.to(self.device)) |
|
log["samples_outpainting"] = x_samples |
|
|
|
if plot_progressive_rows: |
|
with ema_scope("Plotting Progressives"): |
|
img, progressives = self.progressive_denoising(c, |
|
shape=(self.channels, self.image_size, self.image_size), |
|
batch_size=N) |
|
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation") |
|
log["progressive_row"] = prog_row |
|
|
|
if return_keys: |
|
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: |
|
return log |
|
else: |
|
return {key: log[key] for key in return_keys} |
|
return log |
|
|
|
def configure_optimizers(self): |
|
lr = self.learning_rate |
|
params = list(self.model.parameters()) |
|
if self.cond_stage_trainable: |
|
print(f"{self.__class__.__name__}: Also optimizing conditioner params!") |
|
params = params + list(self.cond_stage_model.parameters()) |
|
if self.learn_logvar: |
|
print('Diffusion model optimizing logvar') |
|
params.append(self.logvar) |
|
opt = torch.optim.AdamW(params, lr=lr) |
|
if self.use_scheduler: |
|
assert 'target' in self.scheduler_config |
|
scheduler = instantiate_from_config(self.scheduler_config) |
|
|
|
print("Setting up LambdaLR scheduler...") |
|
scheduler = [ |
|
{ |
|
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule), |
|
'interval': 'step', |
|
'frequency': 1 |
|
}] |
|
return [opt], scheduler |
|
return opt |
|
|
|
@torch.no_grad() |
|
def to_rgb(self, x): |
|
x = x.float() |
|
if not hasattr(self, "colorize"): |
|
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) |
|
x = nn.functional.conv2d(x, weight=self.colorize) |
|
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1. |
|
return x |
|
|
|
|
|
# class DiffusionWrapper(pl.LightningModule): |
|
class DiffusionWrapper(torch.nn.Module): |
|
def __init__(self, diff_model_config, conditioning_key): |
|
super().__init__() |
|
self.sequential_cross_attn = diff_model_config.pop("sequential_crossattn", False) |
|
self.diffusion_model = instantiate_from_config(diff_model_config) |
|
self.conditioning_key = conditioning_key |
|
assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm', 'crossattn-adm'] |
|
|
|
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None, control=None): |
|
if self.conditioning_key is None: |
|
out = self.diffusion_model(x, t, control=control) |
|
elif self.conditioning_key == 'concat': |
|
xc = torch.cat([x] + c_concat, dim=1) |
|
out = self.diffusion_model(xc, t, control=control) |
|
elif self.conditioning_key == 'crossattn': |
|
if not self.sequential_cross_attn: |
|
cc = torch.cat(c_crossattn, 1) |
|
else: |
|
cc = c_crossattn |
|
if hasattr(self, "scripted_diffusion_model"): |
|
# TorchScript changes names of the arguments |
|
# with argument cc defined as context=cc scripted model will produce |
|
# an error: RuntimeError: forward() is missing value for argument 'argument_3'. |
|
out = self.scripted_diffusion_model(x, t, cc, control=control) |
|
else: |
|
out = self.diffusion_model(x, t, context=cc, control=control) |
|
elif self.conditioning_key == 'hybrid': |
|
xc = torch.cat([x] + c_concat, dim=1) |
|
cc = torch.cat(c_crossattn, 1) |
|
out = self.diffusion_model(xc, t, context=cc, control=control) |
|
elif self.conditioning_key == 'hybrid-adm': |
|
assert c_adm is not None |
|
xc = torch.cat([x] + c_concat, dim=1) |
|
cc = torch.cat(c_crossattn, 1) |
|
out = self.diffusion_model(xc, t, context=cc, y=c_adm, control=control) |
|
elif self.conditioning_key == 'crossattn-adm': |
|
assert c_adm is not None |
|
cc = torch.cat(c_crossattn, 1) |
|
out = self.diffusion_model(x, t, context=cc, y=c_adm, control=control) |
|
elif self.conditioning_key == 'adm': |
|
cc = c_crossattn[0] |
|
out = self.diffusion_model(x, t, y=cc, control=control) |
|
else: |
|
raise NotImplementedError() |
|
|
|
return out |
|
|
|
|
|
class LatentUpscaleDiffusion(LatentDiffusion): |
|
def __init__(self, *args, low_scale_config, low_scale_key="LR", noise_level_key=None, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
# assumes that neither the cond_stage nor the low_scale_model contain trainable params |
|
assert not self.cond_stage_trainable |
|
self.instantiate_low_stage(low_scale_config) |
|
self.low_scale_key = low_scale_key |
|
self.noise_level_key = noise_level_key |
|
|
|
def instantiate_low_stage(self, config): |
|
model = instantiate_from_config(config) |
|
self.low_scale_model = model.eval() |
|
self.low_scale_model.train = disabled_train |
|
for param in self.low_scale_model.parameters(): |
|
param.requires_grad = False |
|
|
|
@torch.no_grad() |
|
def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False): |
|
if not log_mode: |
|
z, c = super().get_input(batch, k, force_c_encode=True, bs=bs) |
|
else: |
|
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True, |
|
force_c_encode=True, return_original_cond=True, bs=bs) |
|
x_low = batch[self.low_scale_key][:bs] |
|
x_low = rearrange(x_low, 'b h w c -> b c h w') |
|
x_low = x_low.to(memory_format=torch.contiguous_format).float() |
|
zx, noise_level = self.low_scale_model(x_low) |
|
if self.noise_level_key is not None: |
|
# get noise level from batch instead, e.g. when extracting a custom noise level for bsr |
|
raise NotImplementedError('TODO') |
|
|
|
all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level} |
|
if log_mode: |
|
# TODO: maybe disable if too expensive |
|
x_low_rec = self.low_scale_model.decode(zx) |
|
return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level |
|
return z, all_conds |
|
|
|
@torch.no_grad() |
|
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None, |
|
plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True, |
|
unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True, |
|
**kwargs): |
|
ema_scope = self.ema_scope if use_ema_scope else nullcontext |
|
use_ddim = ddim_steps is not None |
|
|
|
log = dict() |
|
z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N, |
|
log_mode=True) |
|
N = min(x.shape[0], N) |
|
n_row = min(x.shape[0], n_row) |
|
log["inputs"] = x |
|
log["reconstruction"] = xrec |
|
log["x_lr"] = x_low |
|
log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec |
|
if self.model.conditioning_key is not None: |
|
if hasattr(self.cond_stage_model, "decode"): |
|
xc = self.cond_stage_model.decode(c) |
|
log["conditioning"] = xc |
|
elif self.cond_stage_key in ["caption", "txt"]: |
|
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25) |
|
log["conditioning"] = xc |
|
elif self.cond_stage_key in ['class_label', 'cls']: |
|
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25) |
|
log['conditioning'] = xc |
|
elif isimage(xc): |
|
log["conditioning"] = xc |
|
if ismap(xc): |
|
log["original_conditioning"] = self.to_rgb(xc) |
|
|
|
if plot_diffusion_rows: |
|
# get diffusion row |
|
diffusion_row = list() |
|
z_start = z[:n_row] |
|
for t in range(self.num_timesteps): |
|
if t % self.log_every_t == 0 or t == self.num_timesteps - 1: |
|
t = repeat(torch.tensor([t]), '1 -> b', b=n_row) |
|
t = t.to(self.device).long() |
|
noise = torch.randn_like(z_start) |
|
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) |
|
diffusion_row.append(self.decode_first_stage(z_noisy)) |
|
|
|
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W |
|
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') |
|
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') |
|
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) |
|
log["diffusion_row"] = diffusion_grid |
|
|
|
if sample: |
|
# get denoise row |
|
with ema_scope("Sampling"): |
|
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, |
|
ddim_steps=ddim_steps, eta=ddim_eta) |
|
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) |
|
x_samples = self.decode_first_stage(samples) |
|
log["samples"] = x_samples |
|
if plot_denoise_rows: |
|
denoise_grid = self._get_denoise_row_from_list(z_denoise_row) |
|
log["denoise_row"] = denoise_grid |
|
|
|
if unconditional_guidance_scale > 1.0: |
|
uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label) |
|
# TODO explore better "unconditional" choices for the other keys |
|
# maybe guide away from empty text label and highest noise level and maximally degraded zx? |
|
uc = dict() |
|
for k in c: |
|
if k == "c_crossattn": |
|
assert isinstance(c[k], list) and len(c[k]) == 1 |
|
uc[k] = [uc_tmp] |
|
elif k == "c_adm": # todo: only run with text-based guidance? |
|
assert isinstance(c[k], torch.Tensor) |
|
#uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level |
|
uc[k] = c[k] |
|
elif isinstance(c[k], list): |
|
uc[k] = [c[k][i] for i in range(len(c[k]))] |
|
else: |
|
uc[k] = c[k] |
|
|
|
with ema_scope("Sampling with classifier-free guidance"): |
|
samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, |
|
ddim_steps=ddim_steps, eta=ddim_eta, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=uc, |
|
) |
|
x_samples_cfg = self.decode_first_stage(samples_cfg) |
|
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg |
|
|
|
if plot_progressive_rows: |
|
with ema_scope("Plotting Progressives"): |
|
img, progressives = self.progressive_denoising(c, |
|
shape=(self.channels, self.image_size, self.image_size), |
|
batch_size=N) |
|
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation") |
|
log["progressive_row"] = prog_row |
|
|
|
return log |
|
|
|
|
|
class LatentFinetuneDiffusion(LatentDiffusion): |
|
""" |
|
Basis for different finetunas, such as inpainting or depth2image |
|
To disable finetuning mode, set finetune_keys to None |
|
""" |
|
|
|
def __init__(self, |
|
concat_keys: tuple, |
|
finetune_keys=("model.diffusion_model.input_blocks.0.0.weight", |
|
"model_ema.diffusion_modelinput_blocks00weight" |
|
), |
|
keep_finetune_dims=4, |
|
# if model was trained without concat mode before and we would like to keep these channels |
|
c_concat_log_start=None, # to log reconstruction of c_concat codes |
|
c_concat_log_end=None, |
|
*args, **kwargs |
|
): |
|
ckpt_path = kwargs.pop("ckpt_path", None) |
|
ignore_keys = kwargs.pop("ignore_keys", list()) |
|
super().__init__(*args, **kwargs) |
|
self.finetune_keys = finetune_keys |
|
self.concat_keys = concat_keys |
|
self.keep_dims = keep_finetune_dims |
|
self.c_concat_log_start = c_concat_log_start |
|
self.c_concat_log_end = c_concat_log_end |
|
if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint' |
|
if exists(ckpt_path): |
|
self.init_from_ckpt(ckpt_path, ignore_keys) |
|
|
|
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): |
|
sd = torch.load(path, map_location="cpu") |
|
if "state_dict" in list(sd.keys()): |
|
sd = sd["state_dict"] |
|
keys = list(sd.keys()) |
|
for k in keys: |
|
for ik in ignore_keys: |
|
if k.startswith(ik): |
|
print("Deleting key {} from state_dict.".format(k)) |
|
del sd[k] |
|
|
|
# make it explicit, finetune by including extra input channels |
|
if exists(self.finetune_keys) and k in self.finetune_keys: |
|
new_entry = None |
|
for name, param in self.named_parameters(): |
|
if name in self.finetune_keys: |
|
print( |
|
f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only") |
|
new_entry = torch.zeros_like(param) # zero init |
|
assert exists(new_entry), 'did not find matching parameter to modify' |
|
new_entry[:, :self.keep_dims, ...] = sd[k] |
|
sd[k] = new_entry |
|
|
|
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( |
|
sd, strict=False) |
|
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") |
|
if len(missing) > 0: |
|
print(f"Missing Keys: {missing}") |
|
if len(unexpected) > 0: |
|
print(f"Unexpected Keys: {unexpected}") |
|
|
|
@torch.no_grad() |
|
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None, |
|
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True, |
|
plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None, |
|
use_ema_scope=True, |
|
**kwargs): |
|
ema_scope = self.ema_scope if use_ema_scope else nullcontext |
|
use_ddim = ddim_steps is not None |
|
|
|
log = dict() |
|
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True) |
|
c_cat, c = c["c_concat"][0], c["c_crossattn"][0] |
|
N = min(x.shape[0], N) |
|
n_row = min(x.shape[0], n_row) |
|
log["inputs"] = x |
|
log["reconstruction"] = xrec |
|
if self.model.conditioning_key is not None: |
|
if hasattr(self.cond_stage_model, "decode"): |
|
xc = self.cond_stage_model.decode(c) |
|
log["conditioning"] = xc |
|
elif self.cond_stage_key in ["caption", "txt"]: |
|
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25) |
|
log["conditioning"] = xc |
|
elif self.cond_stage_key in ['class_label', 'cls']: |
|
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25) |
|
log['conditioning'] = xc |
|
elif isimage(xc): |
|
log["conditioning"] = xc |
|
if ismap(xc): |
|
log["original_conditioning"] = self.to_rgb(xc) |
|
|
|
if not (self.c_concat_log_start is None and self.c_concat_log_end is None): |
|
log["c_concat_decoded"] = self.decode_first_stage(c_cat[:, self.c_concat_log_start:self.c_concat_log_end]) |
|
|
|
if plot_diffusion_rows: |
|
# get diffusion row |
|
diffusion_row = list() |
|
z_start = z[:n_row] |
|
for t in range(self.num_timesteps): |
|
if t % self.log_every_t == 0 or t == self.num_timesteps - 1: |
|
t = repeat(torch.tensor([t]), '1 -> b', b=n_row) |
|
t = t.to(self.device).long() |
|
noise = torch.randn_like(z_start) |
|
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) |
|
diffusion_row.append(self.decode_first_stage(z_noisy)) |
|
|
|
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W |
|
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') |
|
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') |
|
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) |
|
log["diffusion_row"] = diffusion_grid |
|
|
|
if sample: |
|
# get denoise row |
|
with ema_scope("Sampling"): |
|
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]}, |
|
batch_size=N, ddim=use_ddim, |
|
ddim_steps=ddim_steps, eta=ddim_eta) |
|
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) |
|
x_samples = self.decode_first_stage(samples) |
|
log["samples"] = x_samples |
|
if plot_denoise_rows: |
|
denoise_grid = self._get_denoise_row_from_list(z_denoise_row) |
|
log["denoise_row"] = denoise_grid |
|
|
|
if unconditional_guidance_scale > 1.0: |
|
uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label) |
|
uc_cat = c_cat |
|
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]} |
|
with ema_scope("Sampling with classifier-free guidance"): |
|
samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]}, |
|
batch_size=N, ddim=use_ddim, |
|
ddim_steps=ddim_steps, eta=ddim_eta, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=uc_full, |
|
) |
|
x_samples_cfg = self.decode_first_stage(samples_cfg) |
|
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg |
|
|
|
return log |
|
|
|
|
|
class LatentInpaintDiffusion(LatentFinetuneDiffusion): |
|
""" |
|
can either run as pure inpainting model (only concat mode) or with mixed conditionings, |
|
e.g. mask as concat and text via cross-attn. |
|
To disable finetuning mode, set finetune_keys to None |
|
""" |
|
|
|
def __init__(self, |
|
concat_keys=("mask", "masked_image"), |
|
masked_image_key="masked_image", |
|
*args, **kwargs |
|
): |
|
super().__init__(concat_keys, *args, **kwargs) |
|
self.masked_image_key = masked_image_key |
|
assert self.masked_image_key in concat_keys |
|
|
|
@torch.no_grad() |
|
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False): |
|
# note: restricted to non-trainable encoders currently |
|
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting' |
|
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True, |
|
force_c_encode=True, return_original_cond=True, bs=bs) |
|
|
|
assert exists(self.concat_keys) |
|
c_cat = list() |
|
for ck in self.concat_keys: |
|
cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float() |
|
if bs is not None: |
|
cc = cc[:bs] |
|
cc = cc.to(self.device) |
|
bchw = z.shape |
|
if ck != self.masked_image_key: |
|
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:]) |
|
else: |
|
cc = self.get_first_stage_encoding(self.encode_first_stage(cc)) |
|
c_cat.append(cc) |
|
c_cat = torch.cat(c_cat, dim=1) |
|
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]} |
|
if return_first_stage_outputs: |
|
return z, all_conds, x, xrec, xc |
|
return z, all_conds |
|
|
|
@torch.no_grad() |
|
def log_images(self, *args, **kwargs): |
|
log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs) |
|
log["masked_image"] = rearrange(args[0]["masked_image"], |
|
'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float() |
|
return log |
|
|
|
|
|
class LatentDepth2ImageDiffusion(LatentFinetuneDiffusion): |
|
""" |
|
condition on monocular depth estimation |
|
""" |
|
|
|
def __init__(self, depth_stage_config, concat_keys=("midas_in",), *args, **kwargs): |
|
super().__init__(concat_keys=concat_keys, *args, **kwargs) |
|
self.depth_model = instantiate_from_config(depth_stage_config) |
|
self.depth_stage_key = concat_keys[0] |
|
|
|
@torch.no_grad() |
|
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False): |
|
# note: restricted to non-trainable encoders currently |
|
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for depth2img' |
|
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True, |
|
force_c_encode=True, return_original_cond=True, bs=bs) |
|
|
|
assert exists(self.concat_keys) |
|
assert len(self.concat_keys) == 1 |
|
c_cat = list() |
|
for ck in self.concat_keys: |
|
cc = batch[ck] |
|
if bs is not None: |
|
cc = cc[:bs] |
|
cc = cc.to(self.device) |
|
cc = self.depth_model(cc) |
|
cc = torch.nn.functional.interpolate( |
|
cc, |
|
size=z.shape[2:], |
|
mode="bicubic", |
|
align_corners=False, |
|
) |
|
|
|
depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3], |
|
keepdim=True) |
|
cc = 2. * (cc - depth_min) / (depth_max - depth_min + 0.001) - 1. |
|
c_cat.append(cc) |
|
c_cat = torch.cat(c_cat, dim=1) |
|
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]} |
|
if return_first_stage_outputs: |
|
return z, all_conds, x, xrec, xc |
|
return z, all_conds |
|
|
|
@torch.no_grad() |
|
def log_images(self, *args, **kwargs): |
|
log = super().log_images(*args, **kwargs) |
|
depth = self.depth_model(args[0][self.depth_stage_key]) |
|
depth_min, depth_max = torch.amin(depth, dim=[1, 2, 3], keepdim=True), \ |
|
torch.amax(depth, dim=[1, 2, 3], keepdim=True) |
|
log["depth"] = 2. * (depth - depth_min) / (depth_max - depth_min) - 1. |
|
return log |
|
|
|
|
|
class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion): |
|
""" |
|
condition on low-res image (and optionally on some spatial noise augmentation) |
|
""" |
|
def __init__(self, concat_keys=("lr",), reshuffle_patch_size=None, |
|
low_scale_config=None, low_scale_key=None, *args, **kwargs): |
|
super().__init__(concat_keys=concat_keys, *args, **kwargs) |
|
self.reshuffle_patch_size = reshuffle_patch_size |
|
self.low_scale_model = None |
|
if low_scale_config is not None: |
|
print("Initializing a low-scale model") |
|
assert exists(low_scale_key) |
|
self.instantiate_low_stage(low_scale_config) |
|
self.low_scale_key = low_scale_key |
|
|
|
def instantiate_low_stage(self, config): |
|
model = instantiate_from_config(config) |
|
self.low_scale_model = model.eval() |
|
self.low_scale_model.train = disabled_train |
|
for param in self.low_scale_model.parameters(): |
|
param.requires_grad = False |
|
|
|
@torch.no_grad() |
|
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False): |
|
# note: restricted to non-trainable encoders currently |
|
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for upscaling-ft' |
|
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True, |
|
force_c_encode=True, return_original_cond=True, bs=bs) |
|
|
|
assert exists(self.concat_keys) |
|
assert len(self.concat_keys) == 1 |
|
# optionally make spatial noise_level here |
|
c_cat = list() |
|
noise_level = None |
|
for ck in self.concat_keys: |
|
cc = batch[ck] |
|
cc = rearrange(cc, 'b h w c -> b c h w') |
|
if exists(self.reshuffle_patch_size): |
|
assert isinstance(self.reshuffle_patch_size, int) |
|
cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w', |
|
p1=self.reshuffle_patch_size, p2=self.reshuffle_patch_size) |
|
if bs is not None: |
|
cc = cc[:bs] |
|
cc = cc.to(self.device) |
|
if exists(self.low_scale_model) and ck == self.low_scale_key: |
|
cc, noise_level = self.low_scale_model(cc) |
|
c_cat.append(cc) |
|
c_cat = torch.cat(c_cat, dim=1) |
|
if exists(noise_level): |
|
all_conds = {"c_concat": [c_cat], "c_crossattn": [c], "c_adm": noise_level} |
|
else: |
|
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]} |
|
if return_first_stage_outputs: |
|
return z, all_conds, x, xrec, xc |
|
return z, all_conds |
|
|
|
@torch.no_grad() |
|
def log_images(self, *args, **kwargs): |
|
log = super().log_images(*args, **kwargs) |
|
log["lr"] = rearrange(args[0]["lr"], 'b h w c -> b c h w') |
|
return log
|
|
|