You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
859 lines
26 KiB
859 lines
26 KiB
import psutil |
|
from enum import Enum |
|
from comfy.cli_args import args |
|
import comfy.utils |
|
import torch |
|
import sys |
|
|
|
class VRAMState(Enum): |
|
DISABLED = 0 #No vram present: no need to move models to vram |
|
NO_VRAM = 1 #Very low vram: enable all the options to save vram |
|
LOW_VRAM = 2 |
|
NORMAL_VRAM = 3 |
|
HIGH_VRAM = 4 |
|
SHARED = 5 #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both. |
|
|
|
class CPUState(Enum): |
|
GPU = 0 |
|
CPU = 1 |
|
MPS = 2 |
|
|
|
# Determine VRAM State |
|
vram_state = VRAMState.NORMAL_VRAM |
|
set_vram_to = VRAMState.NORMAL_VRAM |
|
cpu_state = CPUState.GPU |
|
|
|
total_vram = 0 |
|
|
|
lowvram_available = True |
|
xpu_available = False |
|
|
|
if args.deterministic: |
|
print("Using deterministic algorithms for pytorch") |
|
torch.use_deterministic_algorithms(True, warn_only=True) |
|
|
|
directml_enabled = False |
|
if args.directml is not None: |
|
import torch_directml |
|
directml_enabled = True |
|
device_index = args.directml |
|
if device_index < 0: |
|
directml_device = torch_directml.device() |
|
else: |
|
directml_device = torch_directml.device(device_index) |
|
print("Using directml with device:", torch_directml.device_name(device_index)) |
|
# torch_directml.disable_tiled_resources(True) |
|
lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default. |
|
|
|
try: |
|
import intel_extension_for_pytorch as ipex |
|
if torch.xpu.is_available(): |
|
xpu_available = True |
|
except: |
|
pass |
|
|
|
try: |
|
if torch.backends.mps.is_available(): |
|
cpu_state = CPUState.MPS |
|
import torch.mps |
|
except: |
|
pass |
|
|
|
if args.cpu: |
|
cpu_state = CPUState.CPU |
|
|
|
def is_intel_xpu(): |
|
global cpu_state |
|
global xpu_available |
|
if cpu_state == CPUState.GPU: |
|
if xpu_available: |
|
return True |
|
return False |
|
|
|
def get_torch_device(): |
|
global directml_enabled |
|
global cpu_state |
|
if directml_enabled: |
|
global directml_device |
|
return directml_device |
|
if cpu_state == CPUState.MPS: |
|
return torch.device("mps") |
|
if cpu_state == CPUState.CPU: |
|
return torch.device("cpu") |
|
else: |
|
if is_intel_xpu(): |
|
return torch.device("xpu") |
|
else: |
|
return torch.device(torch.cuda.current_device()) |
|
|
|
def get_total_memory(dev=None, torch_total_too=False): |
|
global directml_enabled |
|
if dev is None: |
|
dev = get_torch_device() |
|
|
|
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): |
|
mem_total = psutil.virtual_memory().total |
|
mem_total_torch = mem_total |
|
else: |
|
if directml_enabled: |
|
mem_total = 1024 * 1024 * 1024 #TODO |
|
mem_total_torch = mem_total |
|
elif is_intel_xpu(): |
|
stats = torch.xpu.memory_stats(dev) |
|
mem_reserved = stats['reserved_bytes.all.current'] |
|
mem_total = torch.xpu.get_device_properties(dev).total_memory |
|
mem_total_torch = mem_reserved |
|
else: |
|
stats = torch.cuda.memory_stats(dev) |
|
mem_reserved = stats['reserved_bytes.all.current'] |
|
_, mem_total_cuda = torch.cuda.mem_get_info(dev) |
|
mem_total_torch = mem_reserved |
|
mem_total = mem_total_cuda |
|
|
|
if torch_total_too: |
|
return (mem_total, mem_total_torch) |
|
else: |
|
return mem_total |
|
|
|
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024) |
|
total_ram = psutil.virtual_memory().total / (1024 * 1024) |
|
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram)) |
|
if not args.normalvram and not args.cpu: |
|
if lowvram_available and total_vram <= 4096: |
|
print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram") |
|
set_vram_to = VRAMState.LOW_VRAM |
|
|
|
try: |
|
OOM_EXCEPTION = torch.cuda.OutOfMemoryError |
|
except: |
|
OOM_EXCEPTION = Exception |
|
|
|
XFORMERS_VERSION = "" |
|
XFORMERS_ENABLED_VAE = True |
|
if args.disable_xformers: |
|
XFORMERS_IS_AVAILABLE = False |
|
else: |
|
try: |
|
import xformers |
|
import xformers.ops |
|
XFORMERS_IS_AVAILABLE = True |
|
try: |
|
XFORMERS_IS_AVAILABLE = xformers._has_cpp_library |
|
except: |
|
pass |
|
try: |
|
XFORMERS_VERSION = xformers.version.__version__ |
|
print("xformers version:", XFORMERS_VERSION) |
|
if XFORMERS_VERSION.startswith("0.0.18"): |
|
print() |
|
print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.") |
|
print("Please downgrade or upgrade xformers to a different version.") |
|
print() |
|
XFORMERS_ENABLED_VAE = False |
|
except: |
|
pass |
|
except: |
|
XFORMERS_IS_AVAILABLE = False |
|
|
|
def is_nvidia(): |
|
global cpu_state |
|
if cpu_state == CPUState.GPU: |
|
if torch.version.cuda: |
|
return True |
|
return False |
|
|
|
ENABLE_PYTORCH_ATTENTION = False |
|
if args.use_pytorch_cross_attention: |
|
ENABLE_PYTORCH_ATTENTION = True |
|
XFORMERS_IS_AVAILABLE = False |
|
|
|
VAE_DTYPE = torch.float32 |
|
|
|
try: |
|
if is_nvidia(): |
|
torch_version = torch.version.__version__ |
|
if int(torch_version[0]) >= 2: |
|
if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False: |
|
ENABLE_PYTORCH_ATTENTION = True |
|
if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8: |
|
VAE_DTYPE = torch.bfloat16 |
|
if is_intel_xpu(): |
|
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False: |
|
ENABLE_PYTORCH_ATTENTION = True |
|
except: |
|
pass |
|
|
|
if is_intel_xpu(): |
|
VAE_DTYPE = torch.bfloat16 |
|
|
|
if args.cpu_vae: |
|
VAE_DTYPE = torch.float32 |
|
|
|
if args.fp16_vae: |
|
VAE_DTYPE = torch.float16 |
|
elif args.bf16_vae: |
|
VAE_DTYPE = torch.bfloat16 |
|
elif args.fp32_vae: |
|
VAE_DTYPE = torch.float32 |
|
|
|
|
|
if ENABLE_PYTORCH_ATTENTION: |
|
torch.backends.cuda.enable_math_sdp(True) |
|
torch.backends.cuda.enable_flash_sdp(True) |
|
torch.backends.cuda.enable_mem_efficient_sdp(True) |
|
|
|
if args.lowvram: |
|
set_vram_to = VRAMState.LOW_VRAM |
|
lowvram_available = True |
|
elif args.novram: |
|
set_vram_to = VRAMState.NO_VRAM |
|
elif args.highvram or args.gpu_only: |
|
vram_state = VRAMState.HIGH_VRAM |
|
|
|
FORCE_FP32 = False |
|
FORCE_FP16 = False |
|
if args.force_fp32: |
|
print("Forcing FP32, if this improves things please report it.") |
|
FORCE_FP32 = True |
|
|
|
if args.force_fp16: |
|
print("Forcing FP16.") |
|
FORCE_FP16 = True |
|
|
|
if lowvram_available: |
|
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM): |
|
vram_state = set_vram_to |
|
|
|
|
|
if cpu_state != CPUState.GPU: |
|
vram_state = VRAMState.DISABLED |
|
|
|
if cpu_state == CPUState.MPS: |
|
vram_state = VRAMState.SHARED |
|
|
|
print(f"Set vram state to: {vram_state.name}") |
|
|
|
DISABLE_SMART_MEMORY = args.disable_smart_memory |
|
|
|
if DISABLE_SMART_MEMORY: |
|
print("Disabling smart memory management") |
|
|
|
def get_torch_device_name(device): |
|
if hasattr(device, 'type'): |
|
if device.type == "cuda": |
|
try: |
|
allocator_backend = torch.cuda.get_allocator_backend() |
|
except: |
|
allocator_backend = "" |
|
return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend) |
|
else: |
|
return "{}".format(device.type) |
|
elif is_intel_xpu(): |
|
return "{} {}".format(device, torch.xpu.get_device_name(device)) |
|
else: |
|
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device)) |
|
|
|
try: |
|
print("Device:", get_torch_device_name(get_torch_device())) |
|
except: |
|
print("Could not pick default device.") |
|
|
|
print("VAE dtype:", VAE_DTYPE) |
|
|
|
current_loaded_models = [] |
|
|
|
def module_size(module): |
|
module_mem = 0 |
|
sd = module.state_dict() |
|
for k in sd: |
|
t = sd[k] |
|
module_mem += t.nelement() * t.element_size() |
|
return module_mem |
|
|
|
class LoadedModel: |
|
def __init__(self, model): |
|
self.model = model |
|
self.model_accelerated = False |
|
self.device = model.load_device |
|
|
|
def model_memory(self): |
|
return self.model.model_size() |
|
|
|
def model_memory_required(self, device): |
|
if device == self.model.current_device: |
|
return 0 |
|
else: |
|
return self.model_memory() |
|
|
|
def model_load(self, lowvram_model_memory=0): |
|
patch_model_to = None |
|
if lowvram_model_memory == 0: |
|
patch_model_to = self.device |
|
|
|
self.model.model_patches_to(self.device) |
|
self.model.model_patches_to(self.model.model_dtype()) |
|
|
|
try: |
|
self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU |
|
except Exception as e: |
|
self.model.unpatch_model(self.model.offload_device) |
|
self.model_unload() |
|
raise e |
|
|
|
if lowvram_model_memory > 0: |
|
print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024)) |
|
mem_counter = 0 |
|
for m in self.real_model.modules(): |
|
if hasattr(m, "comfy_cast_weights"): |
|
m.prev_comfy_cast_weights = m.comfy_cast_weights |
|
m.comfy_cast_weights = True |
|
module_mem = module_size(m) |
|
if mem_counter + module_mem < lowvram_model_memory: |
|
m.to(self.device) |
|
mem_counter += module_mem |
|
elif hasattr(m, "weight"): #only modules with comfy_cast_weights can be set to lowvram mode |
|
m.to(self.device) |
|
mem_counter += module_size(m) |
|
print("lowvram: loaded module regularly", m) |
|
|
|
self.model_accelerated = True |
|
|
|
if is_intel_xpu() and not args.disable_ipex_optimize: |
|
self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True) |
|
|
|
return self.real_model |
|
|
|
def model_unload(self): |
|
if self.model_accelerated: |
|
for m in self.real_model.modules(): |
|
if hasattr(m, "prev_comfy_cast_weights"): |
|
m.comfy_cast_weights = m.prev_comfy_cast_weights |
|
del m.prev_comfy_cast_weights |
|
|
|
self.model_accelerated = False |
|
|
|
self.model.unpatch_model(self.model.offload_device) |
|
self.model.model_patches_to(self.model.offload_device) |
|
|
|
def __eq__(self, other): |
|
return self.model is other.model |
|
|
|
def minimum_inference_memory(): |
|
return (1024 * 1024 * 1024) |
|
|
|
def unload_model_clones(model): |
|
to_unload = [] |
|
for i in range(len(current_loaded_models)): |
|
if model.is_clone(current_loaded_models[i].model): |
|
to_unload = [i] + to_unload |
|
|
|
for i in to_unload: |
|
print("unload clone", i) |
|
current_loaded_models.pop(i).model_unload() |
|
|
|
def free_memory(memory_required, device, keep_loaded=[]): |
|
unloaded_model = False |
|
for i in range(len(current_loaded_models) -1, -1, -1): |
|
if not DISABLE_SMART_MEMORY: |
|
if get_free_memory(device) > memory_required: |
|
break |
|
shift_model = current_loaded_models[i] |
|
if shift_model.device == device: |
|
if shift_model not in keep_loaded: |
|
m = current_loaded_models.pop(i) |
|
m.model_unload() |
|
del m |
|
unloaded_model = True |
|
|
|
if unloaded_model: |
|
soft_empty_cache() |
|
else: |
|
if vram_state != VRAMState.HIGH_VRAM: |
|
mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True) |
|
if mem_free_torch > mem_free_total * 0.25: |
|
soft_empty_cache() |
|
|
|
def load_models_gpu(models, memory_required=0): |
|
global vram_state |
|
|
|
inference_memory = minimum_inference_memory() |
|
extra_mem = max(inference_memory, memory_required) |
|
|
|
models_to_load = [] |
|
models_already_loaded = [] |
|
for x in models: |
|
loaded_model = LoadedModel(x) |
|
|
|
if loaded_model in current_loaded_models: |
|
index = current_loaded_models.index(loaded_model) |
|
current_loaded_models.insert(0, current_loaded_models.pop(index)) |
|
models_already_loaded.append(loaded_model) |
|
else: |
|
if hasattr(x, "model"): |
|
print(f"Requested to load {x.model.__class__.__name__}") |
|
models_to_load.append(loaded_model) |
|
|
|
if len(models_to_load) == 0: |
|
devs = set(map(lambda a: a.device, models_already_loaded)) |
|
for d in devs: |
|
if d != torch.device("cpu"): |
|
free_memory(extra_mem, d, models_already_loaded) |
|
return |
|
|
|
print(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}") |
|
|
|
total_memory_required = {} |
|
for loaded_model in models_to_load: |
|
unload_model_clones(loaded_model.model) |
|
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device) |
|
|
|
for device in total_memory_required: |
|
if device != torch.device("cpu"): |
|
free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded) |
|
|
|
for loaded_model in models_to_load: |
|
model = loaded_model.model |
|
torch_dev = model.load_device |
|
if is_device_cpu(torch_dev): |
|
vram_set_state = VRAMState.DISABLED |
|
else: |
|
vram_set_state = vram_state |
|
lowvram_model_memory = 0 |
|
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM): |
|
model_size = loaded_model.model_memory_required(torch_dev) |
|
current_free_mem = get_free_memory(torch_dev) |
|
lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 )) |
|
if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary |
|
vram_set_state = VRAMState.LOW_VRAM |
|
else: |
|
lowvram_model_memory = 0 |
|
|
|
if vram_set_state == VRAMState.NO_VRAM: |
|
lowvram_model_memory = 64 * 1024 * 1024 |
|
|
|
cur_loaded_model = loaded_model.model_load(lowvram_model_memory) |
|
current_loaded_models.insert(0, loaded_model) |
|
return |
|
|
|
|
|
def load_model_gpu(model): |
|
return load_models_gpu([model]) |
|
|
|
def cleanup_models(): |
|
to_delete = [] |
|
for i in range(len(current_loaded_models)): |
|
if sys.getrefcount(current_loaded_models[i].model) <= 2: |
|
to_delete = [i] + to_delete |
|
|
|
for i in to_delete: |
|
x = current_loaded_models.pop(i) |
|
x.model_unload() |
|
del x |
|
|
|
def dtype_size(dtype): |
|
dtype_size = 4 |
|
if dtype == torch.float16 or dtype == torch.bfloat16: |
|
dtype_size = 2 |
|
elif dtype == torch.float32: |
|
dtype_size = 4 |
|
else: |
|
try: |
|
dtype_size = dtype.itemsize |
|
except: #Old pytorch doesn't have .itemsize |
|
pass |
|
return dtype_size |
|
|
|
def unet_offload_device(): |
|
if vram_state == VRAMState.HIGH_VRAM: |
|
return get_torch_device() |
|
else: |
|
return torch.device("cpu") |
|
|
|
def unet_inital_load_device(parameters, dtype): |
|
torch_dev = get_torch_device() |
|
if vram_state == VRAMState.HIGH_VRAM: |
|
return torch_dev |
|
|
|
cpu_dev = torch.device("cpu") |
|
if DISABLE_SMART_MEMORY: |
|
return cpu_dev |
|
|
|
model_size = dtype_size(dtype) * parameters |
|
|
|
mem_dev = get_free_memory(torch_dev) |
|
mem_cpu = get_free_memory(cpu_dev) |
|
if mem_dev > mem_cpu and model_size < mem_dev: |
|
return torch_dev |
|
else: |
|
return cpu_dev |
|
|
|
def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]): |
|
if args.bf16_unet: |
|
return torch.bfloat16 |
|
if args.fp16_unet: |
|
return torch.float16 |
|
if args.fp8_e4m3fn_unet: |
|
return torch.float8_e4m3fn |
|
if args.fp8_e5m2_unet: |
|
return torch.float8_e5m2 |
|
if should_use_fp16(device=device, model_params=model_params, manual_cast=True): |
|
if torch.float16 in supported_dtypes: |
|
return torch.float16 |
|
if should_use_bf16(device, model_params=model_params, manual_cast=True): |
|
if torch.bfloat16 in supported_dtypes: |
|
return torch.bfloat16 |
|
return torch.float32 |
|
|
|
# None means no manual cast |
|
def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]): |
|
if weight_dtype == torch.float32: |
|
return None |
|
|
|
fp16_supported = should_use_fp16(inference_device, prioritize_performance=False) |
|
if fp16_supported and weight_dtype == torch.float16: |
|
return None |
|
|
|
bf16_supported = should_use_bf16(inference_device) |
|
if bf16_supported and weight_dtype == torch.bfloat16: |
|
return None |
|
|
|
if fp16_supported and torch.float16 in supported_dtypes: |
|
return torch.float16 |
|
|
|
elif bf16_supported and torch.bfloat16 in supported_dtypes: |
|
return torch.bfloat16 |
|
else: |
|
return torch.float32 |
|
|
|
def text_encoder_offload_device(): |
|
if args.gpu_only: |
|
return get_torch_device() |
|
else: |
|
return torch.device("cpu") |
|
|
|
def text_encoder_device(): |
|
if args.gpu_only: |
|
return get_torch_device() |
|
elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM: |
|
if is_intel_xpu(): |
|
return torch.device("cpu") |
|
if should_use_fp16(prioritize_performance=False): |
|
return get_torch_device() |
|
else: |
|
return torch.device("cpu") |
|
else: |
|
return torch.device("cpu") |
|
|
|
def text_encoder_dtype(device=None): |
|
if args.fp8_e4m3fn_text_enc: |
|
return torch.float8_e4m3fn |
|
elif args.fp8_e5m2_text_enc: |
|
return torch.float8_e5m2 |
|
elif args.fp16_text_enc: |
|
return torch.float16 |
|
elif args.fp32_text_enc: |
|
return torch.float32 |
|
|
|
if is_device_cpu(device): |
|
return torch.float16 |
|
|
|
return torch.float16 |
|
|
|
|
|
def intermediate_device(): |
|
if args.gpu_only: |
|
return get_torch_device() |
|
else: |
|
return torch.device("cpu") |
|
|
|
def vae_device(): |
|
if args.cpu_vae: |
|
return torch.device("cpu") |
|
return get_torch_device() |
|
|
|
def vae_offload_device(): |
|
if args.gpu_only: |
|
return get_torch_device() |
|
else: |
|
return torch.device("cpu") |
|
|
|
def vae_dtype(): |
|
global VAE_DTYPE |
|
return VAE_DTYPE |
|
|
|
def get_autocast_device(dev): |
|
if hasattr(dev, 'type'): |
|
return dev.type |
|
return "cuda" |
|
|
|
def supports_dtype(device, dtype): #TODO |
|
if dtype == torch.float32: |
|
return True |
|
if is_device_cpu(device): |
|
return False |
|
if dtype == torch.float16: |
|
return True |
|
if dtype == torch.bfloat16: |
|
return True |
|
return False |
|
|
|
def device_supports_non_blocking(device): |
|
if is_device_mps(device): |
|
return False #pytorch bug? mps doesn't support non blocking |
|
return True |
|
|
|
def cast_to_device(tensor, device, dtype, copy=False): |
|
device_supports_cast = False |
|
if tensor.dtype == torch.float32 or tensor.dtype == torch.float16: |
|
device_supports_cast = True |
|
elif tensor.dtype == torch.bfloat16: |
|
if hasattr(device, 'type') and device.type.startswith("cuda"): |
|
device_supports_cast = True |
|
elif is_intel_xpu(): |
|
device_supports_cast = True |
|
|
|
non_blocking = device_supports_non_blocking(device) |
|
|
|
if device_supports_cast: |
|
if copy: |
|
if tensor.device == device: |
|
return tensor.to(dtype, copy=copy, non_blocking=non_blocking) |
|
return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking) |
|
else: |
|
return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking) |
|
else: |
|
return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking) |
|
|
|
def xformers_enabled(): |
|
global directml_enabled |
|
global cpu_state |
|
if cpu_state != CPUState.GPU: |
|
return False |
|
if is_intel_xpu(): |
|
return False |
|
if directml_enabled: |
|
return False |
|
return XFORMERS_IS_AVAILABLE |
|
|
|
|
|
def xformers_enabled_vae(): |
|
enabled = xformers_enabled() |
|
if not enabled: |
|
return False |
|
|
|
return XFORMERS_ENABLED_VAE |
|
|
|
def pytorch_attention_enabled(): |
|
global ENABLE_PYTORCH_ATTENTION |
|
return ENABLE_PYTORCH_ATTENTION |
|
|
|
def pytorch_attention_flash_attention(): |
|
global ENABLE_PYTORCH_ATTENTION |
|
if ENABLE_PYTORCH_ATTENTION: |
|
#TODO: more reliable way of checking for flash attention? |
|
if is_nvidia(): #pytorch flash attention only works on Nvidia |
|
return True |
|
return False |
|
|
|
def get_free_memory(dev=None, torch_free_too=False): |
|
global directml_enabled |
|
if dev is None: |
|
dev = get_torch_device() |
|
|
|
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): |
|
mem_free_total = psutil.virtual_memory().available |
|
mem_free_torch = mem_free_total |
|
else: |
|
if directml_enabled: |
|
mem_free_total = 1024 * 1024 * 1024 #TODO |
|
mem_free_torch = mem_free_total |
|
elif is_intel_xpu(): |
|
stats = torch.xpu.memory_stats(dev) |
|
mem_active = stats['active_bytes.all.current'] |
|
mem_allocated = stats['allocated_bytes.all.current'] |
|
mem_reserved = stats['reserved_bytes.all.current'] |
|
mem_free_torch = mem_reserved - mem_active |
|
mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated |
|
else: |
|
stats = torch.cuda.memory_stats(dev) |
|
mem_active = stats['active_bytes.all.current'] |
|
mem_reserved = stats['reserved_bytes.all.current'] |
|
mem_free_cuda, _ = torch.cuda.mem_get_info(dev) |
|
mem_free_torch = mem_reserved - mem_active |
|
mem_free_total = mem_free_cuda + mem_free_torch |
|
|
|
if torch_free_too: |
|
return (mem_free_total, mem_free_torch) |
|
else: |
|
return mem_free_total |
|
|
|
def cpu_mode(): |
|
global cpu_state |
|
return cpu_state == CPUState.CPU |
|
|
|
def mps_mode(): |
|
global cpu_state |
|
return cpu_state == CPUState.MPS |
|
|
|
def is_device_type(device, type): |
|
if hasattr(device, 'type'): |
|
if (device.type == type): |
|
return True |
|
return False |
|
|
|
def is_device_cpu(device): |
|
return is_device_type(device, 'cpu') |
|
|
|
def is_device_mps(device): |
|
return is_device_type(device, 'mps') |
|
|
|
def is_device_cuda(device): |
|
return is_device_type(device, 'cuda') |
|
|
|
def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False): |
|
global directml_enabled |
|
|
|
if device is not None: |
|
if is_device_cpu(device): |
|
return False |
|
|
|
if FORCE_FP16: |
|
return True |
|
|
|
if device is not None: |
|
if is_device_mps(device): |
|
return True |
|
|
|
if FORCE_FP32: |
|
return False |
|
|
|
if directml_enabled: |
|
return False |
|
|
|
if mps_mode(): |
|
return True |
|
|
|
if cpu_mode(): |
|
return False |
|
|
|
if is_intel_xpu(): |
|
return True |
|
|
|
if torch.version.hip: |
|
return True |
|
|
|
props = torch.cuda.get_device_properties("cuda") |
|
if props.major >= 8: |
|
return True |
|
|
|
if props.major < 6: |
|
return False |
|
|
|
fp16_works = False |
|
#FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled |
|
#when the model doesn't actually fit on the card |
|
#TODO: actually test if GP106 and others have the same type of behavior |
|
nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"] |
|
for x in nvidia_10_series: |
|
if x in props.name.lower(): |
|
fp16_works = True |
|
|
|
if fp16_works or manual_cast: |
|
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory()) |
|
if (not prioritize_performance) or model_params * 4 > free_model_memory: |
|
return True |
|
|
|
if props.major < 7: |
|
return False |
|
|
|
#FP16 is just broken on these cards |
|
nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"] |
|
for x in nvidia_16_series: |
|
if x in props.name: |
|
return False |
|
|
|
return True |
|
|
|
def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False): |
|
if device is not None: |
|
if is_device_cpu(device): #TODO ? bf16 works on CPU but is extremely slow |
|
return False |
|
|
|
if device is not None: #TODO not sure about mps bf16 support |
|
if is_device_mps(device): |
|
return False |
|
|
|
if FORCE_FP32: |
|
return False |
|
|
|
if directml_enabled: |
|
return False |
|
|
|
if cpu_mode() or mps_mode(): |
|
return False |
|
|
|
if is_intel_xpu(): |
|
return True |
|
|
|
if device is None: |
|
device = torch.device("cuda") |
|
|
|
props = torch.cuda.get_device_properties(device) |
|
if props.major >= 8: |
|
return True |
|
|
|
bf16_works = torch.cuda.is_bf16_supported() |
|
|
|
if bf16_works or manual_cast: |
|
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory()) |
|
if (not prioritize_performance) or model_params * 4 > free_model_memory: |
|
return True |
|
|
|
return False |
|
|
|
def soft_empty_cache(force=False): |
|
global cpu_state |
|
if cpu_state == CPUState.MPS: |
|
torch.mps.empty_cache() |
|
elif is_intel_xpu(): |
|
torch.xpu.empty_cache() |
|
elif torch.cuda.is_available(): |
|
if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda |
|
torch.cuda.empty_cache() |
|
torch.cuda.ipc_collect() |
|
|
|
def unload_all_models(): |
|
free_memory(1e30, get_torch_device()) |
|
|
|
|
|
def resolve_lowvram_weight(weight, model, key): #TODO: remove |
|
return weight |
|
|
|
#TODO: might be cleaner to put this somewhere else |
|
import threading |
|
|
|
class InterruptProcessingException(Exception): |
|
pass |
|
|
|
interrupt_processing_mutex = threading.RLock() |
|
|
|
interrupt_processing = False |
|
def interrupt_current_processing(value=True): |
|
global interrupt_processing |
|
global interrupt_processing_mutex |
|
with interrupt_processing_mutex: |
|
interrupt_processing = value |
|
|
|
def processing_interrupted(): |
|
global interrupt_processing |
|
global interrupt_processing_mutex |
|
with interrupt_processing_mutex: |
|
return interrupt_processing |
|
|
|
def throw_exception_if_processing_interrupted(): |
|
global interrupt_processing |
|
global interrupt_processing_mutex |
|
with interrupt_processing_mutex: |
|
if interrupt_processing: |
|
interrupt_processing = False |
|
raise InterruptProcessingException()
|
|
|