You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
362 lines
14 KiB
362 lines
14 KiB
import json |
|
import os |
|
import yaml |
|
|
|
import folder_paths |
|
from comfy.ldm.util import instantiate_from_config |
|
from comfy.sd import ModelPatcher, load_model_weights, CLIP, VAE |
|
import os.path as osp |
|
import re |
|
import torch |
|
from safetensors.torch import load_file, save_file |
|
|
|
# conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py |
|
|
|
# =================# |
|
# UNet Conversion # |
|
# =================# |
|
|
|
unet_conversion_map = [ |
|
# (stable-diffusion, HF Diffusers) |
|
("time_embed.0.weight", "time_embedding.linear_1.weight"), |
|
("time_embed.0.bias", "time_embedding.linear_1.bias"), |
|
("time_embed.2.weight", "time_embedding.linear_2.weight"), |
|
("time_embed.2.bias", "time_embedding.linear_2.bias"), |
|
("input_blocks.0.0.weight", "conv_in.weight"), |
|
("input_blocks.0.0.bias", "conv_in.bias"), |
|
("out.0.weight", "conv_norm_out.weight"), |
|
("out.0.bias", "conv_norm_out.bias"), |
|
("out.2.weight", "conv_out.weight"), |
|
("out.2.bias", "conv_out.bias"), |
|
] |
|
|
|
unet_conversion_map_resnet = [ |
|
# (stable-diffusion, HF Diffusers) |
|
("in_layers.0", "norm1"), |
|
("in_layers.2", "conv1"), |
|
("out_layers.0", "norm2"), |
|
("out_layers.3", "conv2"), |
|
("emb_layers.1", "time_emb_proj"), |
|
("skip_connection", "conv_shortcut"), |
|
] |
|
|
|
unet_conversion_map_layer = [] |
|
# hardcoded number of downblocks and resnets/attentions... |
|
# would need smarter logic for other networks. |
|
for i in range(4): |
|
# loop over downblocks/upblocks |
|
|
|
for j in range(2): |
|
# loop over resnets/attentions for downblocks |
|
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." |
|
sd_down_res_prefix = f"input_blocks.{3 * i + j + 1}.0." |
|
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) |
|
|
|
if i < 3: |
|
# no attention layers in down_blocks.3 |
|
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." |
|
sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1." |
|
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) |
|
|
|
for j in range(3): |
|
# loop over resnets/attentions for upblocks |
|
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." |
|
sd_up_res_prefix = f"output_blocks.{3 * i + j}.0." |
|
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) |
|
|
|
if i > 0: |
|
# no attention layers in up_blocks.0 |
|
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." |
|
sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1." |
|
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) |
|
|
|
if i < 3: |
|
# no downsample in down_blocks.3 |
|
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." |
|
sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op." |
|
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) |
|
|
|
# no upsample in up_blocks.3 |
|
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." |
|
sd_upsample_prefix = f"output_blocks.{3 * i + 2}.{1 if i == 0 else 2}." |
|
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) |
|
|
|
hf_mid_atn_prefix = "mid_block.attentions.0." |
|
sd_mid_atn_prefix = "middle_block.1." |
|
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) |
|
|
|
for j in range(2): |
|
hf_mid_res_prefix = f"mid_block.resnets.{j}." |
|
sd_mid_res_prefix = f"middle_block.{2 * j}." |
|
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) |
|
|
|
|
|
def convert_unet_state_dict(unet_state_dict): |
|
# buyer beware: this is a *brittle* function, |
|
# and correct output requires that all of these pieces interact in |
|
# the exact order in which I have arranged them. |
|
mapping = {k: k for k in unet_state_dict.keys()} |
|
for sd_name, hf_name in unet_conversion_map: |
|
mapping[hf_name] = sd_name |
|
for k, v in mapping.items(): |
|
if "resnets" in k: |
|
for sd_part, hf_part in unet_conversion_map_resnet: |
|
v = v.replace(hf_part, sd_part) |
|
mapping[k] = v |
|
for k, v in mapping.items(): |
|
for sd_part, hf_part in unet_conversion_map_layer: |
|
v = v.replace(hf_part, sd_part) |
|
mapping[k] = v |
|
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} |
|
return new_state_dict |
|
|
|
|
|
# ================# |
|
# VAE Conversion # |
|
# ================# |
|
|
|
vae_conversion_map = [ |
|
# (stable-diffusion, HF Diffusers) |
|
("nin_shortcut", "conv_shortcut"), |
|
("norm_out", "conv_norm_out"), |
|
("mid.attn_1.", "mid_block.attentions.0."), |
|
] |
|
|
|
for i in range(4): |
|
# down_blocks have two resnets |
|
for j in range(2): |
|
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}." |
|
sd_down_prefix = f"encoder.down.{i}.block.{j}." |
|
vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) |
|
|
|
if i < 3: |
|
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0." |
|
sd_downsample_prefix = f"down.{i}.downsample." |
|
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) |
|
|
|
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." |
|
sd_upsample_prefix = f"up.{3 - i}.upsample." |
|
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) |
|
|
|
# up_blocks have three resnets |
|
# also, up blocks in hf are numbered in reverse from sd |
|
for j in range(3): |
|
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}." |
|
sd_up_prefix = f"decoder.up.{3 - i}.block.{j}." |
|
vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) |
|
|
|
# this part accounts for mid blocks in both the encoder and the decoder |
|
for i in range(2): |
|
hf_mid_res_prefix = f"mid_block.resnets.{i}." |
|
sd_mid_res_prefix = f"mid.block_{i + 1}." |
|
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) |
|
|
|
vae_conversion_map_attn = [ |
|
# (stable-diffusion, HF Diffusers) |
|
("norm.", "group_norm."), |
|
("q.", "query."), |
|
("k.", "key."), |
|
("v.", "value."), |
|
("proj_out.", "proj_attn."), |
|
] |
|
|
|
|
|
def reshape_weight_for_sd(w): |
|
# convert HF linear weights to SD conv2d weights |
|
return w.reshape(*w.shape, 1, 1) |
|
|
|
|
|
def convert_vae_state_dict(vae_state_dict): |
|
mapping = {k: k for k in vae_state_dict.keys()} |
|
for k, v in mapping.items(): |
|
for sd_part, hf_part in vae_conversion_map: |
|
v = v.replace(hf_part, sd_part) |
|
mapping[k] = v |
|
for k, v in mapping.items(): |
|
if "attentions" in k: |
|
for sd_part, hf_part in vae_conversion_map_attn: |
|
v = v.replace(hf_part, sd_part) |
|
mapping[k] = v |
|
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()} |
|
weights_to_convert = ["q", "k", "v", "proj_out"] |
|
for k, v in new_state_dict.items(): |
|
for weight_name in weights_to_convert: |
|
if f"mid.attn_1.{weight_name}.weight" in k: |
|
print(f"Reshaping {k} for SD format") |
|
new_state_dict[k] = reshape_weight_for_sd(v) |
|
return new_state_dict |
|
|
|
|
|
# =========================# |
|
# Text Encoder Conversion # |
|
# =========================# |
|
|
|
|
|
textenc_conversion_lst = [ |
|
# (stable-diffusion, HF Diffusers) |
|
("resblocks.", "text_model.encoder.layers."), |
|
("ln_1", "layer_norm1"), |
|
("ln_2", "layer_norm2"), |
|
(".c_fc.", ".fc1."), |
|
(".c_proj.", ".fc2."), |
|
(".attn", ".self_attn"), |
|
("ln_final.", "transformer.text_model.final_layer_norm."), |
|
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"), |
|
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"), |
|
] |
|
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} |
|
textenc_pattern = re.compile("|".join(protected.keys())) |
|
|
|
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp |
|
code2idx = {"q": 0, "k": 1, "v": 2} |
|
|
|
|
|
def convert_text_enc_state_dict_v20(text_enc_dict): |
|
new_state_dict = {} |
|
capture_qkv_weight = {} |
|
capture_qkv_bias = {} |
|
for k, v in text_enc_dict.items(): |
|
if ( |
|
k.endswith(".self_attn.q_proj.weight") |
|
or k.endswith(".self_attn.k_proj.weight") |
|
or k.endswith(".self_attn.v_proj.weight") |
|
): |
|
k_pre = k[: -len(".q_proj.weight")] |
|
k_code = k[-len("q_proj.weight")] |
|
if k_pre not in capture_qkv_weight: |
|
capture_qkv_weight[k_pre] = [None, None, None] |
|
capture_qkv_weight[k_pre][code2idx[k_code]] = v |
|
continue |
|
|
|
if ( |
|
k.endswith(".self_attn.q_proj.bias") |
|
or k.endswith(".self_attn.k_proj.bias") |
|
or k.endswith(".self_attn.v_proj.bias") |
|
): |
|
k_pre = k[: -len(".q_proj.bias")] |
|
k_code = k[-len("q_proj.bias")] |
|
if k_pre not in capture_qkv_bias: |
|
capture_qkv_bias[k_pre] = [None, None, None] |
|
capture_qkv_bias[k_pre][code2idx[k_code]] = v |
|
continue |
|
|
|
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k) |
|
new_state_dict[relabelled_key] = v |
|
|
|
for k_pre, tensors in capture_qkv_weight.items(): |
|
if None in tensors: |
|
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing") |
|
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre) |
|
new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors) |
|
|
|
for k_pre, tensors in capture_qkv_bias.items(): |
|
if None in tensors: |
|
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing") |
|
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre) |
|
new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors) |
|
|
|
return new_state_dict |
|
|
|
|
|
def convert_text_enc_state_dict(text_enc_dict): |
|
return text_enc_dict |
|
|
|
|
|
def load_diffusers(model_path, fp16=True, output_vae=True, output_clip=True, embedding_directory=None): |
|
diffusers_unet_conf = json.load(open(osp.join(model_path, "unet/config.json"))) |
|
diffusers_scheduler_conf = json.load(open(osp.join(model_path, "scheduler/scheduler_config.json"))) |
|
|
|
# magic |
|
v2 = diffusers_unet_conf["sample_size"] == 96 |
|
if 'prediction_type' in diffusers_scheduler_conf: |
|
v_pred = diffusers_scheduler_conf['prediction_type'] == 'v_prediction' |
|
|
|
if v2: |
|
if v_pred: |
|
config_path = folder_paths.get_full_path("configs", 'v2-inference-v.yaml') |
|
else: |
|
config_path = folder_paths.get_full_path("configs", 'v2-inference.yaml') |
|
else: |
|
config_path = folder_paths.get_full_path("configs", 'v1-inference.yaml') |
|
|
|
with open(config_path, 'r') as stream: |
|
config = yaml.safe_load(stream) |
|
|
|
model_config_params = config['model']['params'] |
|
clip_config = model_config_params['cond_stage_config'] |
|
scale_factor = model_config_params['scale_factor'] |
|
vae_config = model_config_params['first_stage_config'] |
|
vae_config['scale_factor'] = scale_factor |
|
model_config_params["unet_config"]["params"]["use_fp16"] = fp16 |
|
|
|
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors") |
|
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors") |
|
text_enc_path = osp.join(model_path, "text_encoder", "model.safetensors") |
|
|
|
# Load models from safetensors if it exists, if it doesn't pytorch |
|
if osp.exists(unet_path): |
|
unet_state_dict = load_file(unet_path, device="cpu") |
|
else: |
|
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin") |
|
unet_state_dict = torch.load(unet_path, map_location="cpu") |
|
|
|
if osp.exists(vae_path): |
|
vae_state_dict = load_file(vae_path, device="cpu") |
|
else: |
|
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin") |
|
vae_state_dict = torch.load(vae_path, map_location="cpu") |
|
|
|
if osp.exists(text_enc_path): |
|
text_enc_dict = load_file(text_enc_path, device="cpu") |
|
else: |
|
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin") |
|
text_enc_dict = torch.load(text_enc_path, map_location="cpu") |
|
|
|
# Convert the UNet model |
|
unet_state_dict = convert_unet_state_dict(unet_state_dict) |
|
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()} |
|
|
|
# Convert the VAE model |
|
vae_state_dict = convert_vae_state_dict(vae_state_dict) |
|
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()} |
|
|
|
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper |
|
is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict |
|
|
|
if is_v20_model: |
|
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm |
|
text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()} |
|
text_enc_dict = convert_text_enc_state_dict_v20(text_enc_dict) |
|
text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()} |
|
else: |
|
text_enc_dict = convert_text_enc_state_dict(text_enc_dict) |
|
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()} |
|
|
|
# Put together new checkpoint |
|
sd = {**unet_state_dict, **vae_state_dict, **text_enc_dict} |
|
|
|
clip = None |
|
vae = None |
|
|
|
class WeightsLoader(torch.nn.Module): |
|
pass |
|
|
|
w = WeightsLoader() |
|
load_state_dict_to = [] |
|
if output_vae: |
|
vae = VAE(scale_factor=scale_factor, config=vae_config) |
|
w.first_stage_model = vae.first_stage_model |
|
load_state_dict_to = [w] |
|
|
|
if output_clip: |
|
clip = CLIP(config=clip_config, embedding_directory=embedding_directory) |
|
w.cond_stage_model = clip.cond_stage_model |
|
load_state_dict_to = [w] |
|
|
|
model = instantiate_from_config(config["model"]) |
|
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to) |
|
|
|
if fp16: |
|
model = model.half() |
|
|
|
return ModelPatcher(model), clip, vae
|
|
|