You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
546 lines
20 KiB
546 lines
20 KiB
from inspect import isfunction |
|
import math |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn, einsum |
|
from einops import rearrange, repeat |
|
from typing import Optional, Any |
|
|
|
from ldm.modules.diffusionmodules.util import checkpoint |
|
from .sub_quadratic_attention import efficient_dot_product_attention |
|
|
|
try: |
|
import xformers |
|
import xformers.ops |
|
XFORMERS_IS_AVAILBLE = True |
|
except: |
|
XFORMERS_IS_AVAILBLE = False |
|
|
|
# CrossAttn precision handling |
|
import os |
|
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32") |
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
|
|
def uniq(arr): |
|
return{el: True for el in arr}.keys() |
|
|
|
|
|
def default(val, d): |
|
if exists(val): |
|
return val |
|
return d() if isfunction(d) else d |
|
|
|
|
|
def max_neg_value(t): |
|
return -torch.finfo(t.dtype).max |
|
|
|
|
|
def init_(tensor): |
|
dim = tensor.shape[-1] |
|
std = 1 / math.sqrt(dim) |
|
tensor.uniform_(-std, std) |
|
return tensor |
|
|
|
|
|
# feedforward |
|
class GEGLU(nn.Module): |
|
def __init__(self, dim_in, dim_out): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out * 2) |
|
|
|
def forward(self, x): |
|
x, gate = self.proj(x).chunk(2, dim=-1) |
|
return x * F.gelu(gate) |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): |
|
super().__init__() |
|
inner_dim = int(dim * mult) |
|
dim_out = default(dim_out, dim) |
|
project_in = nn.Sequential( |
|
nn.Linear(dim, inner_dim), |
|
nn.GELU() |
|
) if not glu else GEGLU(dim, inner_dim) |
|
|
|
self.net = nn.Sequential( |
|
project_in, |
|
nn.Dropout(dropout), |
|
nn.Linear(inner_dim, dim_out) |
|
) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
|
|
def zero_module(module): |
|
""" |
|
Zero out the parameters of a module and return it. |
|
""" |
|
for p in module.parameters(): |
|
p.detach().zero_() |
|
return module |
|
|
|
|
|
def Normalize(in_channels): |
|
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) |
|
|
|
|
|
class SpatialSelfAttention(nn.Module): |
|
def __init__(self, in_channels): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
|
|
self.norm = Normalize(in_channels) |
|
self.q = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.k = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.v = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.proj_out = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
|
|
def forward(self, x): |
|
h_ = x |
|
h_ = self.norm(h_) |
|
q = self.q(h_) |
|
k = self.k(h_) |
|
v = self.v(h_) |
|
|
|
# compute attention |
|
b,c,h,w = q.shape |
|
q = rearrange(q, 'b c h w -> b (h w) c') |
|
k = rearrange(k, 'b c h w -> b c (h w)') |
|
w_ = torch.einsum('bij,bjk->bik', q, k) |
|
|
|
w_ = w_ * (int(c)**(-0.5)) |
|
w_ = torch.nn.functional.softmax(w_, dim=2) |
|
|
|
# attend to values |
|
v = rearrange(v, 'b c h w -> b c (h w)') |
|
w_ = rearrange(w_, 'b i j -> b j i') |
|
h_ = torch.einsum('bij,bjk->bik', v, w_) |
|
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) |
|
h_ = self.proj_out(h_) |
|
|
|
return x+h_ |
|
|
|
|
|
class CrossAttentionBirchSan(nn.Module): |
|
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
context_dim = default(context_dim, query_dim) |
|
|
|
self.scale = dim_head ** -0.5 |
|
self.heads = heads |
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) |
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) |
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) |
|
|
|
self.to_out = nn.Sequential( |
|
nn.Linear(inner_dim, query_dim), |
|
nn.Dropout(dropout) |
|
) |
|
|
|
def forward(self, x, context=None, mask=None): |
|
h = self.heads |
|
|
|
query = self.to_q(x) |
|
context = default(context, x) |
|
key = self.to_k(context) |
|
value = self.to_v(context) |
|
del context, x |
|
|
|
query = query.unflatten(-1, (self.heads, -1)).transpose(1,2).flatten(end_dim=1) |
|
key_t = key.transpose(1,2).unflatten(1, (self.heads, -1)).flatten(end_dim=1) |
|
del key |
|
value = value.unflatten(-1, (self.heads, -1)).transpose(1,2).flatten(end_dim=1) |
|
|
|
dtype = query.dtype |
|
upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32 |
|
if upcast_attention: |
|
bytes_per_token = torch.finfo(torch.float32).bits//8 |
|
else: |
|
bytes_per_token = torch.finfo(query.dtype).bits//8 |
|
batch_x_heads, q_tokens, _ = query.shape |
|
_, _, k_tokens = key_t.shape |
|
qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens |
|
|
|
stats = torch.cuda.memory_stats(query.device) |
|
mem_active = stats['active_bytes.all.current'] |
|
mem_reserved = stats['reserved_bytes.all.current'] |
|
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) |
|
mem_free_torch = mem_reserved - mem_active |
|
mem_free_total = mem_free_cuda + mem_free_torch |
|
chunk_threshold_bytes = mem_free_torch * 0.5 #Using only this seems to work better on AMD |
|
|
|
kv_chunk_size_min = None |
|
|
|
#not sure at all about the math here |
|
#TODO: tweak this |
|
if mem_free_total > 8192 * 1024 * 1024 * 1.3: |
|
query_chunk_size_x = 1024 * 4 |
|
elif mem_free_total > 4096 * 1024 * 1024 * 1.3: |
|
query_chunk_size_x = 1024 * 2 |
|
else: |
|
query_chunk_size_x = 1024 |
|
kv_chunk_size_min_x = None |
|
kv_chunk_size_x = (int((chunk_threshold_bytes // (batch_x_heads * bytes_per_token * query_chunk_size_x)) * 2.0) // 1024) * 1024 |
|
if kv_chunk_size_x < 1024: |
|
kv_chunk_size_x = None |
|
|
|
if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes: |
|
# the big matmul fits into our memory limit; do everything in 1 chunk, |
|
# i.e. send it down the unchunked fast-path |
|
query_chunk_size = q_tokens |
|
kv_chunk_size = k_tokens |
|
else: |
|
query_chunk_size = query_chunk_size_x |
|
kv_chunk_size = kv_chunk_size_x |
|
kv_chunk_size_min = kv_chunk_size_min_x |
|
|
|
hidden_states = efficient_dot_product_attention( |
|
query, |
|
key_t, |
|
value, |
|
query_chunk_size=query_chunk_size, |
|
kv_chunk_size=kv_chunk_size, |
|
kv_chunk_size_min=kv_chunk_size_min, |
|
use_checkpoint=self.training, |
|
upcast_attention=upcast_attention, |
|
) |
|
|
|
hidden_states = hidden_states.to(dtype) |
|
|
|
hidden_states = hidden_states.unflatten(0, (-1, self.heads)).transpose(1,2).flatten(start_dim=2) |
|
|
|
out_proj, dropout = self.to_out |
|
hidden_states = out_proj(hidden_states) |
|
hidden_states = dropout(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class CrossAttentionDoggettx(nn.Module): |
|
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
context_dim = default(context_dim, query_dim) |
|
|
|
self.scale = dim_head ** -0.5 |
|
self.heads = heads |
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) |
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) |
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) |
|
|
|
self.to_out = nn.Sequential( |
|
nn.Linear(inner_dim, query_dim), |
|
nn.Dropout(dropout) |
|
) |
|
|
|
def forward(self, x, context=None, mask=None): |
|
h = self.heads |
|
|
|
q_in = self.to_q(x) |
|
context = default(context, x) |
|
k_in = self.to_k(context) |
|
v_in = self.to_v(context) |
|
del context, x |
|
|
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) |
|
del q_in, k_in, v_in |
|
|
|
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device) |
|
|
|
stats = torch.cuda.memory_stats(q.device) |
|
mem_active = stats['active_bytes.all.current'] |
|
mem_reserved = stats['reserved_bytes.all.current'] |
|
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) |
|
mem_free_torch = mem_reserved - mem_active |
|
mem_free_total = mem_free_cuda + mem_free_torch |
|
|
|
gb = 1024 ** 3 |
|
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() |
|
modifier = 3 if q.element_size() == 2 else 2.5 |
|
mem_required = tensor_size * modifier |
|
steps = 1 |
|
|
|
|
|
if mem_required > mem_free_total: |
|
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) |
|
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB " |
|
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}") |
|
|
|
if steps > 64: |
|
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 |
|
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). ' |
|
f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free') |
|
|
|
# print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size) |
|
first_op_done = False |
|
cleared_cache = False |
|
while True: |
|
try: |
|
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] |
|
for i in range(0, q.shape[1], slice_size): |
|
end = i + slice_size |
|
if _ATTN_PRECISION =="fp32": |
|
with torch.autocast(enabled=False, device_type = 'cuda'): |
|
s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * self.scale |
|
else: |
|
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * self.scale |
|
first_op_done = True |
|
|
|
s2 = s1.softmax(dim=-1) |
|
del s1 |
|
|
|
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) |
|
del s2 |
|
break |
|
except torch.cuda.OutOfMemoryError as e: |
|
if first_op_done == False: |
|
torch.cuda.empty_cache() |
|
torch.cuda.ipc_collect() |
|
if cleared_cache == False: |
|
cleared_cache = True |
|
print("out of memory error, emptying cache and trying again") |
|
continue |
|
steps *= 2 |
|
if steps > 64: |
|
raise e |
|
print("out of memory error, increasing steps and trying again", steps) |
|
else: |
|
raise e |
|
|
|
del q, k, v |
|
|
|
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) |
|
del r1 |
|
|
|
return self.to_out(r2) |
|
|
|
class OriginalCrossAttention(nn.Module): |
|
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
context_dim = default(context_dim, query_dim) |
|
|
|
self.scale = dim_head ** -0.5 |
|
self.heads = heads |
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) |
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) |
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) |
|
|
|
self.to_out = nn.Sequential( |
|
nn.Linear(inner_dim, query_dim), |
|
nn.Dropout(dropout) |
|
) |
|
|
|
def forward(self, x, context=None, mask=None): |
|
h = self.heads |
|
|
|
q = self.to_q(x) |
|
context = default(context, x) |
|
k = self.to_k(context) |
|
v = self.to_v(context) |
|
|
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) |
|
|
|
# force cast to fp32 to avoid overflowing |
|
if _ATTN_PRECISION =="fp32": |
|
with torch.autocast(enabled=False, device_type = 'cuda'): |
|
q, k = q.float(), k.float() |
|
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale |
|
else: |
|
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale |
|
|
|
del q, k |
|
|
|
if exists(mask): |
|
mask = rearrange(mask, 'b ... -> b (...)') |
|
max_neg_value = -torch.finfo(sim.dtype).max |
|
mask = repeat(mask, 'b j -> (b h) () j', h=h) |
|
sim.masked_fill_(~mask, max_neg_value) |
|
|
|
# attention, what we cannot get enough of |
|
sim = sim.softmax(dim=-1) |
|
|
|
out = einsum('b i j, b j d -> b i d', sim, v) |
|
out = rearrange(out, '(b h) n d -> b n (h d)', h=h) |
|
return self.to_out(out) |
|
|
|
import sys |
|
if "--use-split-cross-attention" in sys.argv: |
|
print("Using split optimization for cross attention") |
|
class CrossAttention(CrossAttentionDoggettx): |
|
pass |
|
else: |
|
print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention") |
|
class CrossAttention(CrossAttentionBirchSan): |
|
pass |
|
|
|
class MemoryEfficientCrossAttention(nn.Module): |
|
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 |
|
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0): |
|
super().__init__() |
|
print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using " |
|
f"{heads} heads.") |
|
inner_dim = dim_head * heads |
|
context_dim = default(context_dim, query_dim) |
|
|
|
self.heads = heads |
|
self.dim_head = dim_head |
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) |
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) |
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) |
|
|
|
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) |
|
self.attention_op: Optional[Any] = None |
|
|
|
def forward(self, x, context=None, mask=None): |
|
q = self.to_q(x) |
|
context = default(context, x) |
|
k = self.to_k(context) |
|
v = self.to_v(context) |
|
|
|
b, _, _ = q.shape |
|
q, k, v = map( |
|
lambda t: t.unsqueeze(3) |
|
.reshape(b, t.shape[1], self.heads, self.dim_head) |
|
.permute(0, 2, 1, 3) |
|
.reshape(b * self.heads, t.shape[1], self.dim_head) |
|
.contiguous(), |
|
(q, k, v), |
|
) |
|
|
|
# actually compute the attention, what we cannot get enough of |
|
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op) |
|
|
|
if exists(mask): |
|
raise NotImplementedError |
|
out = ( |
|
out.unsqueeze(0) |
|
.reshape(b, self.heads, out.shape[1], self.dim_head) |
|
.permute(0, 2, 1, 3) |
|
.reshape(b, out.shape[1], self.heads * self.dim_head) |
|
) |
|
return self.to_out(out) |
|
|
|
|
|
class BasicTransformerBlock(nn.Module): |
|
ATTENTION_MODES = { |
|
"softmax": CrossAttention, # vanilla attention |
|
"softmax-xformers": MemoryEfficientCrossAttention |
|
} |
|
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, |
|
disable_self_attn=False): |
|
super().__init__() |
|
attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax" |
|
assert attn_mode in self.ATTENTION_MODES |
|
attn_cls = self.ATTENTION_MODES[attn_mode] |
|
self.disable_self_attn = disable_self_attn |
|
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, |
|
context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn |
|
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) |
|
self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim, |
|
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none |
|
self.norm1 = nn.LayerNorm(dim) |
|
self.norm2 = nn.LayerNorm(dim) |
|
self.norm3 = nn.LayerNorm(dim) |
|
self.checkpoint = checkpoint |
|
|
|
def forward(self, x, context=None): |
|
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) |
|
|
|
def _forward(self, x, context=None): |
|
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x |
|
x = self.attn2(self.norm2(x), context=context) + x |
|
x = self.ff(self.norm3(x)) + x |
|
return x |
|
|
|
|
|
class SpatialTransformer(nn.Module): |
|
""" |
|
Transformer block for image-like data. |
|
First, project the input (aka embedding) |
|
and reshape to b, t, d. |
|
Then apply standard transformer action. |
|
Finally, reshape to image |
|
NEW: use_linear for more efficiency instead of the 1x1 convs |
|
""" |
|
def __init__(self, in_channels, n_heads, d_head, |
|
depth=1, dropout=0., context_dim=None, |
|
disable_self_attn=False, use_linear=False, |
|
use_checkpoint=True): |
|
super().__init__() |
|
if exists(context_dim) and not isinstance(context_dim, list): |
|
context_dim = [context_dim] |
|
self.in_channels = in_channels |
|
inner_dim = n_heads * d_head |
|
self.norm = Normalize(in_channels) |
|
if not use_linear: |
|
self.proj_in = nn.Conv2d(in_channels, |
|
inner_dim, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
else: |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], |
|
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint) |
|
for d in range(depth)] |
|
) |
|
if not use_linear: |
|
self.proj_out = zero_module(nn.Conv2d(inner_dim, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0)) |
|
else: |
|
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim)) |
|
self.use_linear = use_linear |
|
|
|
def forward(self, x, context=None): |
|
# note: if no context is given, cross-attention defaults to self-attention |
|
if not isinstance(context, list): |
|
context = [context] |
|
b, c, h, w = x.shape |
|
x_in = x |
|
x = self.norm(x) |
|
if not self.use_linear: |
|
x = self.proj_in(x) |
|
x = rearrange(x, 'b c h w -> b (h w) c').contiguous() |
|
if self.use_linear: |
|
x = self.proj_in(x) |
|
for i, block in enumerate(self.transformer_blocks): |
|
x = block(x, context=context[i]) |
|
if self.use_linear: |
|
x = self.proj_out(x) |
|
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous() |
|
if not self.use_linear: |
|
x = self.proj_out(x) |
|
return x + x_in |
|
|
|
|