You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
306 lines
9.3 KiB
306 lines
9.3 KiB
import { api } from "./api.js"; |
|
|
|
export function getPngMetadata(file) { |
|
return new Promise((r) => { |
|
const reader = new FileReader(); |
|
reader.onload = (event) => { |
|
// Get the PNG data as a Uint8Array |
|
const pngData = new Uint8Array(event.target.result); |
|
const dataView = new DataView(pngData.buffer); |
|
|
|
// Check that the PNG signature is present |
|
if (dataView.getUint32(0) !== 0x89504e47) { |
|
console.error("Not a valid PNG file"); |
|
r(); |
|
return; |
|
} |
|
|
|
// Start searching for chunks after the PNG signature |
|
let offset = 8; |
|
let txt_chunks = {}; |
|
// Loop through the chunks in the PNG file |
|
while (offset < pngData.length) { |
|
// Get the length of the chunk |
|
const length = dataView.getUint32(offset); |
|
// Get the chunk type |
|
const type = String.fromCharCode(...pngData.slice(offset + 4, offset + 8)); |
|
if (type === "tEXt") { |
|
// Get the keyword |
|
let keyword_end = offset + 8; |
|
while (pngData[keyword_end] !== 0) { |
|
keyword_end++; |
|
} |
|
const keyword = String.fromCharCode(...pngData.slice(offset + 8, keyword_end)); |
|
// Get the text |
|
const text = String.fromCharCode(...pngData.slice(keyword_end + 1, offset + 8 + length)); |
|
txt_chunks[keyword] = text; |
|
} |
|
|
|
offset += 12 + length; |
|
} |
|
|
|
r(txt_chunks); |
|
}; |
|
|
|
reader.readAsArrayBuffer(file); |
|
}); |
|
} |
|
|
|
export async function importA1111(graph, parameters) { |
|
const p = parameters.lastIndexOf("\nSteps:"); |
|
if (p > -1) { |
|
const embeddings = await api.getEmbeddings(); |
|
const opts = parameters |
|
.substr(p) |
|
.split(",") |
|
.reduce((p, n) => { |
|
const s = n.split(":"); |
|
p[s[0].trim().toLowerCase()] = s[1].trim(); |
|
return p; |
|
}, {}); |
|
const p2 = parameters.lastIndexOf("\nNegative prompt:", p); |
|
if (p2 > -1) { |
|
let positive = parameters.substr(0, p2).trim(); |
|
let negative = parameters.substring(p2 + 18, p).trim(); |
|
|
|
const ckptNode = LiteGraph.createNode("CheckpointLoaderSimple"); |
|
const clipSkipNode = LiteGraph.createNode("CLIPSetLastLayer"); |
|
const positiveNode = LiteGraph.createNode("CLIPTextEncode"); |
|
const negativeNode = LiteGraph.createNode("CLIPTextEncode"); |
|
const samplerNode = LiteGraph.createNode("KSampler"); |
|
const imageNode = LiteGraph.createNode("EmptyLatentImage"); |
|
const vaeNode = LiteGraph.createNode("VAEDecode"); |
|
const vaeLoaderNode = LiteGraph.createNode("VAELoader"); |
|
const saveNode = LiteGraph.createNode("SaveImage"); |
|
let hrSamplerNode = null; |
|
|
|
const ceil64 = (v) => Math.ceil(v / 64) * 64; |
|
|
|
function getWidget(node, name) { |
|
return node.widgets.find((w) => w.name === name); |
|
} |
|
|
|
function setWidgetValue(node, name, value, isOptionPrefix) { |
|
const w = getWidget(node, name); |
|
if (isOptionPrefix) { |
|
const o = w.options.values.find((w) => w.startsWith(value)); |
|
if (o) { |
|
w.value = o; |
|
} else { |
|
console.warn(`Unknown value '${value}' for widget '${name}'`, node); |
|
w.value = value; |
|
} |
|
} else { |
|
w.value = value; |
|
} |
|
} |
|
|
|
function createLoraNodes(clipNode, text, prevClip, prevModel) { |
|
const loras = []; |
|
text = text.replace(/<lora:([^:]+:[^>]+)>/g, function (m, c) { |
|
const s = c.split(":"); |
|
const weight = parseFloat(s[1]); |
|
if (isNaN(weight)) { |
|
console.warn("Invalid LORA", m); |
|
} else { |
|
loras.push({ name: s[0], weight }); |
|
} |
|
return ""; |
|
}); |
|
|
|
for (const l of loras) { |
|
const loraNode = LiteGraph.createNode("LoraLoader"); |
|
graph.add(loraNode); |
|
setWidgetValue(loraNode, "lora_name", l.name, true); |
|
setWidgetValue(loraNode, "strength_model", l.weight); |
|
setWidgetValue(loraNode, "strength_clip", l.weight); |
|
prevModel.node.connect(prevModel.index, loraNode, 0); |
|
prevClip.node.connect(prevClip.index, loraNode, 1); |
|
prevModel = { node: loraNode, index: 0 }; |
|
prevClip = { node: loraNode, index: 1 }; |
|
} |
|
|
|
prevClip.node.connect(1, clipNode, 0); |
|
prevModel.node.connect(0, samplerNode, 0); |
|
if (hrSamplerNode) { |
|
prevModel.node.connect(0, hrSamplerNode, 0); |
|
} |
|
|
|
return { text, prevModel, prevClip }; |
|
} |
|
|
|
function replaceEmbeddings(text) { |
|
return text.replaceAll( |
|
new RegExp( |
|
"\\b(" + embeddings.map((e) => e.replace(/[.*+?^${}()|[\]\\]/g, "\\$&")).join("\\b|\\b") + ")\\b", |
|
"ig" |
|
), |
|
"embedding:$1" |
|
); |
|
} |
|
|
|
function popOpt(name) { |
|
const v = opts[name]; |
|
delete opts[name]; |
|
return v; |
|
} |
|
|
|
graph.clear(); |
|
graph.add(ckptNode); |
|
graph.add(clipSkipNode); |
|
graph.add(positiveNode); |
|
graph.add(negativeNode); |
|
graph.add(samplerNode); |
|
graph.add(imageNode); |
|
graph.add(vaeNode); |
|
graph.add(vaeLoaderNode); |
|
graph.add(saveNode); |
|
|
|
ckptNode.connect(1, clipSkipNode, 0); |
|
clipSkipNode.connect(0, positiveNode, 0); |
|
clipSkipNode.connect(0, negativeNode, 0); |
|
ckptNode.connect(0, samplerNode, 0); |
|
positiveNode.connect(0, samplerNode, 1); |
|
negativeNode.connect(0, samplerNode, 2); |
|
imageNode.connect(0, samplerNode, 3); |
|
vaeNode.connect(0, saveNode, 0); |
|
samplerNode.connect(0, vaeNode, 0); |
|
vaeLoaderNode.connect(0, vaeNode, 1); |
|
|
|
const handlers = { |
|
model(v) { |
|
setWidgetValue(ckptNode, "ckpt_name", v, true); |
|
}, |
|
"cfg scale"(v) { |
|
setWidgetValue(samplerNode, "cfg", +v); |
|
}, |
|
"clip skip"(v) { |
|
setWidgetValue(clipSkipNode, "stop_at_clip_layer", -v); |
|
}, |
|
sampler(v) { |
|
let name = v.toLowerCase().replace("++", "pp").replaceAll(" ", "_"); |
|
if (name.includes("karras")) { |
|
name = name.replace("karras", "").replace(/_+$/, ""); |
|
setWidgetValue(samplerNode, "scheduler", "karras"); |
|
} else { |
|
setWidgetValue(samplerNode, "scheduler", "normal"); |
|
} |
|
const w = getWidget(samplerNode, "sampler_name"); |
|
const o = w.options.values.find((w) => w === name || w === "sample_" + name); |
|
if (o) { |
|
setWidgetValue(samplerNode, "sampler_name", o); |
|
} |
|
}, |
|
size(v) { |
|
const wxh = v.split("x"); |
|
const w = ceil64(+wxh[0]); |
|
const h = ceil64(+wxh[1]); |
|
const hrUp = popOpt("hires upscale"); |
|
const hrSz = popOpt("hires resize"); |
|
let hrMethod = popOpt("hires upscaler"); |
|
|
|
setWidgetValue(imageNode, "width", w); |
|
setWidgetValue(imageNode, "height", h); |
|
|
|
if (hrUp || hrSz) { |
|
let uw, uh; |
|
if (hrUp) { |
|
uw = w * hrUp; |
|
uh = h * hrUp; |
|
} else { |
|
const s = hrSz.split("x"); |
|
uw = +s[0]; |
|
uh = +s[1]; |
|
} |
|
|
|
let upscaleNode; |
|
let latentNode; |
|
|
|
if (hrMethod.startsWith("Latent")) { |
|
latentNode = upscaleNode = LiteGraph.createNode("LatentUpscale"); |
|
graph.add(upscaleNode); |
|
samplerNode.connect(0, upscaleNode, 0); |
|
|
|
switch (hrMethod) { |
|
case "Latent (nearest-exact)": |
|
hrMethod = "nearest-exact"; |
|
break; |
|
} |
|
setWidgetValue(upscaleNode, "upscale_method", hrMethod, true); |
|
} else { |
|
const decode = LiteGraph.createNode("VAEDecodeTiled"); |
|
graph.add(decode); |
|
samplerNode.connect(0, decode, 0); |
|
vaeLoaderNode.connect(0, decode, 1); |
|
|
|
const upscaleLoaderNode = LiteGraph.createNode("UpscaleModelLoader"); |
|
graph.add(upscaleLoaderNode); |
|
setWidgetValue(upscaleLoaderNode, "model_name", hrMethod, true); |
|
|
|
const modelUpscaleNode = LiteGraph.createNode("ImageUpscaleWithModel"); |
|
graph.add(modelUpscaleNode); |
|
decode.connect(0, modelUpscaleNode, 1); |
|
upscaleLoaderNode.connect(0, modelUpscaleNode, 0); |
|
|
|
upscaleNode = LiteGraph.createNode("ImageScale"); |
|
graph.add(upscaleNode); |
|
modelUpscaleNode.connect(0, upscaleNode, 0); |
|
|
|
const vaeEncodeNode = (latentNode = LiteGraph.createNode("VAEEncodeTiled")); |
|
graph.add(vaeEncodeNode); |
|
upscaleNode.connect(0, vaeEncodeNode, 0); |
|
vaeLoaderNode.connect(0, vaeEncodeNode, 1); |
|
} |
|
|
|
setWidgetValue(upscaleNode, "width", ceil64(uw)); |
|
setWidgetValue(upscaleNode, "height", ceil64(uh)); |
|
|
|
hrSamplerNode = LiteGraph.createNode("KSampler"); |
|
graph.add(hrSamplerNode); |
|
ckptNode.connect(0, hrSamplerNode, 0); |
|
positiveNode.connect(0, hrSamplerNode, 1); |
|
negativeNode.connect(0, hrSamplerNode, 2); |
|
latentNode.connect(0, hrSamplerNode, 3); |
|
hrSamplerNode.connect(0, vaeNode, 0); |
|
} |
|
}, |
|
steps(v) { |
|
setWidgetValue(samplerNode, "steps", +v); |
|
}, |
|
seed(v) { |
|
setWidgetValue(samplerNode, "seed", +v); |
|
}, |
|
}; |
|
|
|
for (const opt in opts) { |
|
if (opt in handlers) { |
|
handlers[opt](popOpt(opt)); |
|
} |
|
} |
|
|
|
if (hrSamplerNode) { |
|
setWidgetValue(hrSamplerNode, "steps", getWidget(samplerNode, "steps").value); |
|
setWidgetValue(hrSamplerNode, "cfg", getWidget(samplerNode, "cfg").value); |
|
setWidgetValue(hrSamplerNode, "scheduler", getWidget(samplerNode, "scheduler").value); |
|
setWidgetValue(hrSamplerNode, "sampler_name", getWidget(samplerNode, "sampler_name").value); |
|
setWidgetValue(hrSamplerNode, "denoise", +(popOpt("denoising strength") || "1")); |
|
} |
|
|
|
let n = createLoraNodes(positiveNode, positive, { node: clipSkipNode, index: 0 }, { node: ckptNode, index: 0 }); |
|
positive = n.text; |
|
n = createLoraNodes(negativeNode, negative, n.prevClip, n.prevModel); |
|
negative = n.text; |
|
|
|
setWidgetValue(positiveNode, "text", replaceEmbeddings(positive)); |
|
setWidgetValue(negativeNode, "text", replaceEmbeddings(negative)); |
|
|
|
graph.arrange(); |
|
|
|
for (const opt of ["model hash", "ensd"]) { |
|
delete opts[opt]; |
|
} |
|
|
|
console.warn("Unhandled parameters:", opts); |
|
} |
|
} |
|
}
|
|
|