The most powerful and modular stable diffusion GUI, api and backend with a graph/nodes interface.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

77 lines
2.6 KiB

import os
import importlib.util
from comfy.cli_args import args
#Can't use pytorch to get the GPU names because the cuda malloc has to be set before the first import.
def get_gpu_names():
if os.name == 'nt':
import ctypes
# Define necessary C structures and types
class DISPLAY_DEVICEA(ctypes.Structure):
_fields_ = [
('cb', ctypes.c_ulong),
('DeviceName', ctypes.c_char * 32),
('DeviceString', ctypes.c_char * 128),
('StateFlags', ctypes.c_ulong),
('DeviceID', ctypes.c_char * 128),
('DeviceKey', ctypes.c_char * 128)
]
# Load user32.dll
user32 = ctypes.windll.user32
# Call EnumDisplayDevicesA
def enum_display_devices():
device_info = DISPLAY_DEVICEA()
device_info.cb = ctypes.sizeof(device_info)
device_index = 0
gpu_names = set()
while user32.EnumDisplayDevicesA(None, device_index, ctypes.byref(device_info), 0):
device_index += 1
gpu_names.add(device_info.DeviceString.decode('utf-8'))
return gpu_names
return enum_display_devices()
else:
return set()
def cuda_malloc_supported():
blacklist = {"GeForce GTX 960M", "GeForce GTX 950M", "GeForce 945M", "GeForce 940M", "GeForce 930M", "GeForce 920M", "GeForce 910M"}
try:
names = get_gpu_names()
except:
names = set()
for x in names:
if "NVIDIA" in x:
for b in blacklist:
if b in x:
return False
return True
if not args.cuda_malloc:
try:
version = ""
torch_spec = importlib.util.find_spec("torch")
for folder in torch_spec.submodule_search_locations:
ver_file = os.path.join(folder, "version.py")
if os.path.isfile(ver_file):
spec = importlib.util.spec_from_file_location("torch_version_import", ver_file)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
version = module.__version__
if int(version[0]) >= 2: #enable by default for torch version 2.0 and up
args.cuda_malloc = cuda_malloc_supported()
except:
pass
if args.cuda_malloc and not args.disable_cuda_malloc:
env_var = os.environ.get('PYTORCH_CUDA_ALLOC_CONF', None)
if env_var is None:
env_var = "backend:cudaMallocAsync"
else:
env_var += ",backend:cudaMallocAsync"
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = env_var