You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
96 lines
3.8 KiB
96 lines
3.8 KiB
from comfy import sd1_clip |
|
import torch |
|
import os |
|
|
|
class SDXLClipG(sd1_clip.SD1ClipModel): |
|
def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None): |
|
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json") |
|
super().__init__(device=device, freeze=freeze, textmodel_json_config=textmodel_json_config) |
|
self.empty_tokens = [[49406] + [49407] + [0] * 75] |
|
self.text_projection = torch.nn.Parameter(torch.empty(1280, 1280)) |
|
self.layer_norm_hidden_state = False |
|
if layer == "last": |
|
pass |
|
elif layer == "penultimate": |
|
layer_idx = -1 |
|
self.clip_layer(layer_idx) |
|
elif self.layer == "hidden": |
|
assert layer_idx is not None |
|
assert abs(layer_idx) < 32 |
|
self.clip_layer(layer_idx) |
|
else: |
|
raise NotImplementedError() |
|
|
|
def clip_layer(self, layer_idx): |
|
if layer_idx < 0: |
|
layer_idx -= 1 #The real last layer of SD2.x clip is the penultimate one. The last one might contain garbage. |
|
if abs(layer_idx) >= 32: |
|
self.layer = "hidden" |
|
self.layer_idx = -2 |
|
else: |
|
self.layer = "hidden" |
|
self.layer_idx = layer_idx |
|
|
|
def load_sd(self, sd): |
|
if "text_projection" in sd: |
|
self.text_projection[:] = sd.pop("text_projection") |
|
return super().load_sd(sd) |
|
|
|
class SDXLClipGTokenizer(sd1_clip.SD1Tokenizer): |
|
def __init__(self, tokenizer_path=None, embedding_directory=None): |
|
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280) |
|
|
|
|
|
class SDXLTokenizer(sd1_clip.SD1Tokenizer): |
|
def __init__(self, embedding_directory=None): |
|
self.clip_l = sd1_clip.SD1Tokenizer(embedding_directory=embedding_directory) |
|
self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory) |
|
|
|
def tokenize_with_weights(self, text:str, return_word_ids=False): |
|
out = {} |
|
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids) |
|
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids) |
|
return out |
|
|
|
def untokenize(self, token_weight_pair): |
|
return self.clip_g.untokenize(token_weight_pair) |
|
|
|
class SDXLClipModel(torch.nn.Module): |
|
def __init__(self, device="cpu"): |
|
super().__init__() |
|
self.clip_l = sd1_clip.SD1ClipModel(layer="hidden", layer_idx=11, device=device) |
|
self.clip_l.layer_norm_hidden_state = False |
|
self.clip_g = SDXLClipG(device=device) |
|
|
|
def clip_layer(self, layer_idx): |
|
self.clip_l.clip_layer(layer_idx) |
|
self.clip_g.clip_layer(layer_idx) |
|
|
|
def encode_token_weights(self, token_weight_pairs): |
|
token_weight_pairs_g = token_weight_pairs["g"] |
|
token_weight_pairs_l = token_weight_pairs["l"] |
|
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g) |
|
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l) |
|
return torch.cat([l_out, g_out], dim=-1), g_pooled |
|
|
|
def load_sd(self, sd): |
|
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd: |
|
return self.clip_g.load_sd(sd) |
|
else: |
|
return self.clip_l.load_sd(sd) |
|
|
|
class SDXLRefinerClipModel(torch.nn.Module): |
|
def __init__(self, device="cpu"): |
|
super().__init__() |
|
self.clip_g = SDXLClipG(device=device) |
|
|
|
def clip_layer(self, layer_idx): |
|
self.clip_g.clip_layer(layer_idx) |
|
|
|
def encode_token_weights(self, token_weight_pairs): |
|
token_weight_pairs_g = token_weight_pairs["g"] |
|
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g) |
|
return g_out, g_pooled |
|
|
|
def load_sd(self, sd): |
|
return self.clip_g.load_sd(sd)
|
|
|