You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
210 lines
6.5 KiB
210 lines
6.5 KiB
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from PIL import Image |
|
|
|
import comfy.utils |
|
|
|
|
|
class Blend: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image1": ("IMAGE",), |
|
"image2": ("IMAGE",), |
|
"blend_factor": ("FLOAT", { |
|
"default": 0.5, |
|
"min": 0.0, |
|
"max": 1.0, |
|
"step": 0.01 |
|
}), |
|
"blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light"],), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "blend_images" |
|
|
|
CATEGORY = "image/postprocessing" |
|
|
|
def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str): |
|
if image1.shape != image2.shape: |
|
image2 = image2.permute(0, 3, 1, 2) |
|
image2 = comfy.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center') |
|
image2 = image2.permute(0, 2, 3, 1) |
|
|
|
blended_image = self.blend_mode(image1, image2, blend_mode) |
|
blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor |
|
blended_image = torch.clamp(blended_image, 0, 1) |
|
return (blended_image,) |
|
|
|
def blend_mode(self, img1, img2, mode): |
|
if mode == "normal": |
|
return img2 |
|
elif mode == "multiply": |
|
return img1 * img2 |
|
elif mode == "screen": |
|
return 1 - (1 - img1) * (1 - img2) |
|
elif mode == "overlay": |
|
return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2)) |
|
elif mode == "soft_light": |
|
return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1)) |
|
else: |
|
raise ValueError(f"Unsupported blend mode: {mode}") |
|
|
|
def g(self, x): |
|
return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x)) |
|
|
|
class Blur: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"blur_radius": ("INT", { |
|
"default": 1, |
|
"min": 1, |
|
"max": 31, |
|
"step": 1 |
|
}), |
|
"sigma": ("FLOAT", { |
|
"default": 1.0, |
|
"min": 0.1, |
|
"max": 10.0, |
|
"step": 0.1 |
|
}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "blur" |
|
|
|
CATEGORY = "image/postprocessing" |
|
|
|
def gaussian_kernel(self, kernel_size: int, sigma: float): |
|
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size), torch.linspace(-1, 1, kernel_size), indexing="ij") |
|
d = torch.sqrt(x * x + y * y) |
|
g = torch.exp(-(d * d) / (2.0 * sigma * sigma)) |
|
return g / g.sum() |
|
|
|
def blur(self, image: torch.Tensor, blur_radius: int, sigma: float): |
|
if blur_radius == 0: |
|
return (image,) |
|
|
|
batch_size, height, width, channels = image.shape |
|
|
|
kernel_size = blur_radius * 2 + 1 |
|
kernel = self.gaussian_kernel(kernel_size, sigma).repeat(channels, 1, 1).unsqueeze(1) |
|
|
|
image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C) |
|
blurred = F.conv2d(image, kernel, padding=kernel_size // 2, groups=channels) |
|
blurred = blurred.permute(0, 2, 3, 1) |
|
|
|
return (blurred,) |
|
|
|
class Quantize: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"colors": ("INT", { |
|
"default": 256, |
|
"min": 1, |
|
"max": 256, |
|
"step": 1 |
|
}), |
|
"dither": (["none", "floyd-steinberg"],), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "quantize" |
|
|
|
CATEGORY = "image/postprocessing" |
|
|
|
def quantize(self, image: torch.Tensor, colors: int = 256, dither: str = "FLOYDSTEINBERG"): |
|
batch_size, height, width, _ = image.shape |
|
result = torch.zeros_like(image) |
|
|
|
dither_option = Image.Dither.FLOYDSTEINBERG if dither == "floyd-steinberg" else Image.Dither.NONE |
|
|
|
for b in range(batch_size): |
|
tensor_image = image[b] |
|
img = (tensor_image * 255).to(torch.uint8).numpy() |
|
pil_image = Image.fromarray(img, mode='RGB') |
|
|
|
palette = pil_image.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836 |
|
quantized_image = pil_image.quantize(colors=colors, palette=palette, dither=dither_option) |
|
|
|
quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255 |
|
result[b] = quantized_array |
|
|
|
return (result,) |
|
|
|
class Sharpen: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"sharpen_radius": ("INT", { |
|
"default": 1, |
|
"min": 1, |
|
"max": 31, |
|
"step": 1 |
|
}), |
|
"alpha": ("FLOAT", { |
|
"default": 1.0, |
|
"min": 0.1, |
|
"max": 5.0, |
|
"step": 0.1 |
|
}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "sharpen" |
|
|
|
CATEGORY = "image/postprocessing" |
|
|
|
def sharpen(self, image: torch.Tensor, sharpen_radius: int, alpha: float): |
|
if sharpen_radius == 0: |
|
return (image,) |
|
|
|
batch_size, height, width, channels = image.shape |
|
|
|
kernel_size = sharpen_radius * 2 + 1 |
|
kernel = torch.ones((kernel_size, kernel_size), dtype=torch.float32) * -1 |
|
center = kernel_size // 2 |
|
kernel[center, center] = kernel_size**2 |
|
kernel *= alpha |
|
kernel = kernel.repeat(channels, 1, 1).unsqueeze(1) |
|
|
|
tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C) |
|
sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels) |
|
sharpened = sharpened.permute(0, 2, 3, 1) |
|
|
|
result = torch.clamp(sharpened, 0, 1) |
|
|
|
return (result,) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"ImageBlend": Blend, |
|
"ImageBlur": Blur, |
|
"ImageQuantize": Quantize, |
|
"ImageSharpen": Sharpen, |
|
}
|
|
|