You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
140 lines
4.6 KiB
140 lines
4.6 KiB
""" |
|
This file is part of ComfyUI. |
|
Copyright (C) 2024 Stability AI |
|
|
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <https://www.gnu.org/licenses/>. |
|
""" |
|
|
|
import torch |
|
import nodes |
|
import comfy.utils |
|
|
|
|
|
class StableCascade_EmptyLatentImage: |
|
def __init__(self, device="cpu"): |
|
self.device = device |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"width": ("INT", {"default": 1024, "min": 256, "max": nodes.MAX_RESOLUTION, "step": 8}), |
|
"height": ("INT", {"default": 1024, "min": 256, "max": nodes.MAX_RESOLUTION, "step": 8}), |
|
"compression": ("INT", {"default": 42, "min": 4, "max": 128, "step": 1}), |
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}) |
|
}} |
|
RETURN_TYPES = ("LATENT", "LATENT") |
|
RETURN_NAMES = ("stage_c", "stage_b") |
|
FUNCTION = "generate" |
|
|
|
CATEGORY = "latent/stable_cascade" |
|
|
|
def generate(self, width, height, compression, batch_size=1): |
|
c_latent = torch.zeros([batch_size, 16, height // compression, width // compression]) |
|
b_latent = torch.zeros([batch_size, 4, height // 4, width // 4]) |
|
return ({ |
|
"samples": c_latent, |
|
}, { |
|
"samples": b_latent, |
|
}) |
|
|
|
class StableCascade_StageC_VAEEncode: |
|
def __init__(self, device="cpu"): |
|
self.device = device |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"image": ("IMAGE",), |
|
"vae": ("VAE", ), |
|
"compression": ("INT", {"default": 42, "min": 4, "max": 128, "step": 1}), |
|
}} |
|
RETURN_TYPES = ("LATENT", "LATENT") |
|
RETURN_NAMES = ("stage_c", "stage_b") |
|
FUNCTION = "generate" |
|
|
|
CATEGORY = "latent/stable_cascade" |
|
|
|
def generate(self, image, vae, compression): |
|
width = image.shape[-2] |
|
height = image.shape[-3] |
|
out_width = (width // compression) * vae.downscale_ratio |
|
out_height = (height // compression) * vae.downscale_ratio |
|
|
|
s = comfy.utils.common_upscale(image.movedim(-1,1), out_width, out_height, "bicubic", "center").movedim(1,-1) |
|
|
|
c_latent = vae.encode(s[:,:,:,:3]) |
|
b_latent = torch.zeros([c_latent.shape[0], 4, height // 4, width // 4]) |
|
return ({ |
|
"samples": c_latent, |
|
}, { |
|
"samples": b_latent, |
|
}) |
|
|
|
class StableCascade_StageB_Conditioning: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "conditioning": ("CONDITIONING",), |
|
"stage_c": ("LATENT",), |
|
}} |
|
RETURN_TYPES = ("CONDITIONING",) |
|
|
|
FUNCTION = "set_prior" |
|
|
|
CATEGORY = "conditioning/stable_cascade" |
|
|
|
def set_prior(self, conditioning, stage_c): |
|
c = [] |
|
for t in conditioning: |
|
d = t[1].copy() |
|
d['stable_cascade_prior'] = stage_c['samples'] |
|
n = [t[0], d] |
|
c.append(n) |
|
return (c, ) |
|
|
|
class StableCascade_SuperResolutionControlnet: |
|
def __init__(self, device="cpu"): |
|
self.device = device |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"image": ("IMAGE",), |
|
"vae": ("VAE", ), |
|
}} |
|
RETURN_TYPES = ("IMAGE", "LATENT", "LATENT") |
|
RETURN_NAMES = ("controlnet_input", "stage_c", "stage_b") |
|
FUNCTION = "generate" |
|
|
|
CATEGORY = "_for_testing/stable_cascade" |
|
|
|
def generate(self, image, vae): |
|
width = image.shape[-2] |
|
height = image.shape[-3] |
|
batch_size = image.shape[0] |
|
controlnet_input = vae.encode(image[:,:,:,:3]).movedim(1, -1) |
|
|
|
c_latent = torch.zeros([batch_size, 16, height // 16, width // 16]) |
|
b_latent = torch.zeros([batch_size, 4, height // 2, width // 2]) |
|
return (controlnet_input, { |
|
"samples": c_latent, |
|
}, { |
|
"samples": b_latent, |
|
}) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"StableCascade_EmptyLatentImage": StableCascade_EmptyLatentImage, |
|
"StableCascade_StageB_Conditioning": StableCascade_StageB_Conditioning, |
|
"StableCascade_StageC_VAEEncode": StableCascade_StageC_VAEEncode, |
|
"StableCascade_SuperResolutionControlnet": StableCascade_SuperResolutionControlnet, |
|
}
|
|
|