You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
809 lines
31 KiB
809 lines
31 KiB
import torch |
|
import contextlib |
|
|
|
import sd1_clip |
|
import sd2_clip |
|
import model_management |
|
from .ldm.util import instantiate_from_config |
|
from .ldm.models.autoencoder import AutoencoderKL |
|
from omegaconf import OmegaConf |
|
from .cldm import cldm |
|
from .t2i_adapter import adapter |
|
|
|
from . import utils |
|
|
|
def load_torch_file(ckpt): |
|
if ckpt.lower().endswith(".safetensors"): |
|
import safetensors.torch |
|
sd = safetensors.torch.load_file(ckpt, device="cpu") |
|
else: |
|
pl_sd = torch.load(ckpt, map_location="cpu") |
|
if "global_step" in pl_sd: |
|
print(f"Global Step: {pl_sd['global_step']}") |
|
if "state_dict" in pl_sd: |
|
sd = pl_sd["state_dict"] |
|
else: |
|
sd = pl_sd |
|
return sd |
|
|
|
def load_model_weights(model, sd, verbose=False, load_state_dict_to=[]): |
|
m, u = model.load_state_dict(sd, strict=False) |
|
|
|
k = list(sd.keys()) |
|
for x in k: |
|
# print(x) |
|
if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."): |
|
y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.") |
|
sd[y] = sd.pop(x) |
|
|
|
if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd: |
|
ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] |
|
if ids.dtype == torch.float32: |
|
sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round() |
|
|
|
keys_to_replace = { |
|
"cond_stage_model.model.positional_embedding": "cond_stage_model.transformer.text_model.embeddings.position_embedding.weight", |
|
"cond_stage_model.model.token_embedding.weight": "cond_stage_model.transformer.text_model.embeddings.token_embedding.weight", |
|
"cond_stage_model.model.ln_final.weight": "cond_stage_model.transformer.text_model.final_layer_norm.weight", |
|
"cond_stage_model.model.ln_final.bias": "cond_stage_model.transformer.text_model.final_layer_norm.bias", |
|
} |
|
|
|
for x in keys_to_replace: |
|
if x in sd: |
|
sd[keys_to_replace[x]] = sd.pop(x) |
|
|
|
resblock_to_replace = { |
|
"ln_1": "layer_norm1", |
|
"ln_2": "layer_norm2", |
|
"mlp.c_fc": "mlp.fc1", |
|
"mlp.c_proj": "mlp.fc2", |
|
"attn.out_proj": "self_attn.out_proj", |
|
} |
|
|
|
for resblock in range(24): |
|
for x in resblock_to_replace: |
|
for y in ["weight", "bias"]: |
|
k = "cond_stage_model.model.transformer.resblocks.{}.{}.{}".format(resblock, x, y) |
|
k_to = "cond_stage_model.transformer.text_model.encoder.layers.{}.{}.{}".format(resblock, resblock_to_replace[x], y) |
|
if k in sd: |
|
sd[k_to] = sd.pop(k) |
|
|
|
for y in ["weight", "bias"]: |
|
k_from = "cond_stage_model.model.transformer.resblocks.{}.attn.in_proj_{}".format(resblock, y) |
|
if k_from in sd: |
|
weights = sd.pop(k_from) |
|
for x in range(3): |
|
p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"] |
|
k_to = "cond_stage_model.transformer.text_model.encoder.layers.{}.{}.{}".format(resblock, p[x], y) |
|
sd[k_to] = weights[1024*x:1024*(x + 1)] |
|
|
|
for x in load_state_dict_to: |
|
x.load_state_dict(sd, strict=False) |
|
|
|
if len(m) > 0 and verbose: |
|
print("missing keys:") |
|
print(m) |
|
if len(u) > 0 and verbose: |
|
print("unexpected keys:") |
|
print(u) |
|
|
|
model.eval() |
|
return model |
|
|
|
LORA_CLIP_MAP = { |
|
"mlp.fc1": "mlp_fc1", |
|
"mlp.fc2": "mlp_fc2", |
|
"self_attn.k_proj": "self_attn_k_proj", |
|
"self_attn.q_proj": "self_attn_q_proj", |
|
"self_attn.v_proj": "self_attn_v_proj", |
|
"self_attn.out_proj": "self_attn_out_proj", |
|
} |
|
|
|
LORA_UNET_MAP = { |
|
"proj_in": "proj_in", |
|
"proj_out": "proj_out", |
|
"transformer_blocks.0.attn1.to_q": "transformer_blocks_0_attn1_to_q", |
|
"transformer_blocks.0.attn1.to_k": "transformer_blocks_0_attn1_to_k", |
|
"transformer_blocks.0.attn1.to_v": "transformer_blocks_0_attn1_to_v", |
|
"transformer_blocks.0.attn1.to_out.0": "transformer_blocks_0_attn1_to_out_0", |
|
"transformer_blocks.0.attn2.to_q": "transformer_blocks_0_attn2_to_q", |
|
"transformer_blocks.0.attn2.to_k": "transformer_blocks_0_attn2_to_k", |
|
"transformer_blocks.0.attn2.to_v": "transformer_blocks_0_attn2_to_v", |
|
"transformer_blocks.0.attn2.to_out.0": "transformer_blocks_0_attn2_to_out_0", |
|
"transformer_blocks.0.ff.net.0.proj": "transformer_blocks_0_ff_net_0_proj", |
|
"transformer_blocks.0.ff.net.2": "transformer_blocks_0_ff_net_2", |
|
} |
|
|
|
|
|
def load_lora(path, to_load): |
|
lora = load_torch_file(path) |
|
patch_dict = {} |
|
loaded_keys = set() |
|
for x in to_load: |
|
A_name = "{}.lora_up.weight".format(x) |
|
B_name = "{}.lora_down.weight".format(x) |
|
alpha_name = "{}.alpha".format(x) |
|
if A_name in lora.keys(): |
|
alpha = None |
|
if alpha_name in lora.keys(): |
|
alpha = lora[alpha_name].item() |
|
loaded_keys.add(alpha_name) |
|
patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha) |
|
loaded_keys.add(A_name) |
|
loaded_keys.add(B_name) |
|
for x in lora.keys(): |
|
if x not in loaded_keys: |
|
print("lora key not loaded", x) |
|
return patch_dict |
|
|
|
def model_lora_keys(model, key_map={}): |
|
sdk = model.state_dict().keys() |
|
|
|
counter = 0 |
|
for b in range(12): |
|
tk = "model.diffusion_model.input_blocks.{}.1".format(b) |
|
up_counter = 0 |
|
for c in LORA_UNET_MAP: |
|
k = "{}.{}.weight".format(tk, c) |
|
if k in sdk: |
|
lora_key = "lora_unet_down_blocks_{}_attentions_{}_{}".format(counter // 2, counter % 2, LORA_UNET_MAP[c]) |
|
key_map[lora_key] = k |
|
up_counter += 1 |
|
if up_counter >= 4: |
|
counter += 1 |
|
for c in LORA_UNET_MAP: |
|
k = "model.diffusion_model.middle_block.1.{}.weight".format(c) |
|
if k in sdk: |
|
lora_key = "lora_unet_mid_block_attentions_0_{}".format(LORA_UNET_MAP[c]) |
|
key_map[lora_key] = k |
|
counter = 3 |
|
for b in range(12): |
|
tk = "model.diffusion_model.output_blocks.{}.1".format(b) |
|
up_counter = 0 |
|
for c in LORA_UNET_MAP: |
|
k = "{}.{}.weight".format(tk, c) |
|
if k in sdk: |
|
lora_key = "lora_unet_up_blocks_{}_attentions_{}_{}".format(counter // 3, counter % 3, LORA_UNET_MAP[c]) |
|
key_map[lora_key] = k |
|
up_counter += 1 |
|
if up_counter >= 4: |
|
counter += 1 |
|
counter = 0 |
|
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}" |
|
for b in range(24): |
|
for c in LORA_CLIP_MAP: |
|
k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) |
|
if k in sdk: |
|
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c]) |
|
key_map[lora_key] = k |
|
|
|
return key_map |
|
|
|
class ModelPatcher: |
|
def __init__(self, model): |
|
self.model = model |
|
self.patches = [] |
|
self.backup = {} |
|
|
|
def clone(self): |
|
n = ModelPatcher(self.model) |
|
n.patches = self.patches[:] |
|
return n |
|
|
|
def add_patches(self, patches, strength=1.0): |
|
p = {} |
|
model_sd = self.model.state_dict() |
|
for k in patches: |
|
if k in model_sd: |
|
p[k] = patches[k] |
|
self.patches += [(strength, p)] |
|
return p.keys() |
|
|
|
def patch_model(self): |
|
model_sd = self.model.state_dict() |
|
for p in self.patches: |
|
for k in p[1]: |
|
v = p[1][k] |
|
key = k |
|
if key not in model_sd: |
|
print("could not patch. key doesn't exist in model:", k) |
|
continue |
|
|
|
weight = model_sd[key] |
|
if key not in self.backup: |
|
self.backup[key] = weight.clone() |
|
|
|
alpha = p[0] |
|
mat1 = v[0] |
|
mat2 = v[1] |
|
if v[2] is not None: |
|
alpha *= v[2] / mat2.shape[0] |
|
weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device) |
|
return self.model |
|
def unpatch_model(self): |
|
model_sd = self.model.state_dict() |
|
keys = list(self.backup.keys()) |
|
for k in keys: |
|
model_sd[k][:] = self.backup[k] |
|
del self.backup[k] |
|
|
|
self.backup = {} |
|
|
|
def load_lora_for_models(model, clip, lora_path, strength_model, strength_clip): |
|
key_map = model_lora_keys(model.model) |
|
key_map = model_lora_keys(clip.cond_stage_model, key_map) |
|
loaded = load_lora(lora_path, key_map) |
|
new_modelpatcher = model.clone() |
|
k = new_modelpatcher.add_patches(loaded, strength_model) |
|
new_clip = clip.clone() |
|
k1 = new_clip.add_patches(loaded, strength_clip) |
|
k = set(k) |
|
k1 = set(k1) |
|
for x in loaded: |
|
if (x not in k) and (x not in k1): |
|
print("NOT LOADED", x) |
|
|
|
return (new_modelpatcher, new_clip) |
|
|
|
|
|
class CLIP: |
|
def __init__(self, config={}, embedding_directory=None, no_init=False): |
|
if no_init: |
|
return |
|
self.target_clip = config["target"] |
|
if "params" in config: |
|
params = config["params"] |
|
else: |
|
params = {} |
|
|
|
if self.target_clip == "ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder": |
|
clip = sd2_clip.SD2ClipModel |
|
tokenizer = sd2_clip.SD2Tokenizer |
|
elif self.target_clip == "ldm.modules.encoders.modules.FrozenCLIPEmbedder": |
|
clip = sd1_clip.SD1ClipModel |
|
tokenizer = sd1_clip.SD1Tokenizer |
|
|
|
self.cond_stage_model = clip(**(params)) |
|
self.tokenizer = tokenizer(embedding_directory=embedding_directory) |
|
self.patcher = ModelPatcher(self.cond_stage_model) |
|
self.layer_idx = None |
|
|
|
def clone(self): |
|
n = CLIP(no_init=True) |
|
n.target_clip = self.target_clip |
|
n.patcher = self.patcher.clone() |
|
n.cond_stage_model = self.cond_stage_model |
|
n.tokenizer = self.tokenizer |
|
n.layer_idx = self.layer_idx |
|
return n |
|
|
|
def load_from_state_dict(self, sd): |
|
self.cond_stage_model.transformer.load_state_dict(sd, strict=False) |
|
|
|
def add_patches(self, patches, strength=1.0): |
|
return self.patcher.add_patches(patches, strength) |
|
|
|
def clip_layer(self, layer_idx): |
|
self.layer_idx = layer_idx |
|
|
|
def encode(self, text): |
|
if self.layer_idx is not None: |
|
self.cond_stage_model.clip_layer(self.layer_idx) |
|
tokens = self.tokenizer.tokenize_with_weights(text) |
|
try: |
|
self.patcher.patch_model() |
|
cond = self.cond_stage_model.encode_token_weights(tokens) |
|
self.patcher.unpatch_model() |
|
except Exception as e: |
|
self.patcher.unpatch_model() |
|
raise e |
|
return cond |
|
|
|
class VAE: |
|
def __init__(self, ckpt_path=None, scale_factor=0.18215, device=None, config=None): |
|
if config is None: |
|
#default SD1.x/SD2.x VAE parameters |
|
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0} |
|
self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss", ckpt_path=ckpt_path) |
|
else: |
|
self.first_stage_model = AutoencoderKL(**(config['params']), ckpt_path=ckpt_path) |
|
self.first_stage_model = self.first_stage_model.eval() |
|
self.scale_factor = scale_factor |
|
if device is None: |
|
device = model_management.get_torch_device() |
|
self.device = device |
|
|
|
def decode(self, samples): |
|
model_management.unload_model() |
|
self.first_stage_model = self.first_stage_model.to(self.device) |
|
samples = samples.to(self.device) |
|
pixel_samples = self.first_stage_model.decode(1. / self.scale_factor * samples) |
|
pixel_samples = torch.clamp((pixel_samples + 1.0) / 2.0, min=0.0, max=1.0) |
|
self.first_stage_model = self.first_stage_model.cpu() |
|
pixel_samples = pixel_samples.cpu().movedim(1,-1) |
|
return pixel_samples |
|
|
|
def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 8): |
|
model_management.unload_model() |
|
output = torch.empty((samples.shape[0], 3, samples.shape[2] * 8, samples.shape[3] * 8), device="cpu") |
|
self.first_stage_model = self.first_stage_model.to(self.device) |
|
for b in range(samples.shape[0]): |
|
s = samples[b:b+1] |
|
out = torch.zeros((s.shape[0], 3, s.shape[2] * 8, s.shape[3] * 8), device="cpu") |
|
out_div = torch.zeros((s.shape[0], 3, s.shape[2] * 8, s.shape[3] * 8), device="cpu") |
|
for y in range(0, s.shape[2], tile_y - overlap): |
|
for x in range(0, s.shape[3], tile_x - overlap): |
|
s_in = s[:,:,y:y+tile_y,x:x+tile_x] |
|
|
|
pixel_samples = self.first_stage_model.decode(1. / self.scale_factor * s_in.to(self.device)) |
|
pixel_samples = torch.clamp((pixel_samples + 1.0) / 2.0, min=0.0, max=1.0) |
|
ps = pixel_samples.cpu() |
|
mask = torch.ones_like(ps) |
|
feather = overlap * 8 |
|
for t in range(feather): |
|
mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1)) |
|
mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1)) |
|
mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1)) |
|
mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1)) |
|
out[:,:,y*8:(y+tile_y)*8,x*8:(x+tile_x)*8] += ps * mask |
|
out_div[:,:,y*8:(y+tile_y)*8,x*8:(x+tile_x)*8] += mask |
|
|
|
output[b:b+1] = out/out_div |
|
self.first_stage_model = self.first_stage_model.cpu() |
|
return output.movedim(1,-1) |
|
|
|
def encode(self, pixel_samples): |
|
model_management.unload_model() |
|
self.first_stage_model = self.first_stage_model.to(self.device) |
|
pixel_samples = pixel_samples.movedim(-1,1).to(self.device) |
|
samples = self.first_stage_model.encode(2. * pixel_samples - 1.).sample() * self.scale_factor |
|
self.first_stage_model = self.first_stage_model.cpu() |
|
samples = samples.cpu() |
|
return samples |
|
|
|
|
|
def resize_image_to(tensor, target_latent_tensor, batched_number): |
|
tensor = utils.common_upscale(tensor, target_latent_tensor.shape[3] * 8, target_latent_tensor.shape[2] * 8, 'nearest-exact', "center") |
|
target_batch_size = target_latent_tensor.shape[0] |
|
|
|
current_batch_size = tensor.shape[0] |
|
print(current_batch_size, target_batch_size) |
|
if current_batch_size == 1: |
|
return tensor |
|
|
|
per_batch = target_batch_size // batched_number |
|
tensor = tensor[:per_batch] |
|
|
|
if per_batch > tensor.shape[0]: |
|
tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0) |
|
|
|
current_batch_size = tensor.shape[0] |
|
if current_batch_size == target_batch_size: |
|
return tensor |
|
else: |
|
return torch.cat([tensor] * batched_number, dim=0) |
|
|
|
class ControlNet: |
|
def __init__(self, control_model, device=None): |
|
self.control_model = control_model |
|
self.cond_hint_original = None |
|
self.cond_hint = None |
|
self.strength = 1.0 |
|
if device is None: |
|
device = model_management.get_torch_device() |
|
self.device = device |
|
self.previous_controlnet = None |
|
|
|
def get_control(self, x_noisy, t, cond_txt, batched_number): |
|
control_prev = None |
|
if self.previous_controlnet is not None: |
|
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt, batched_number) |
|
|
|
output_dtype = x_noisy.dtype |
|
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]: |
|
if self.cond_hint is not None: |
|
del self.cond_hint |
|
self.cond_hint = None |
|
self.cond_hint = resize_image_to(self.cond_hint_original, x_noisy, batched_number).to(self.control_model.dtype).to(self.device) |
|
|
|
if self.control_model.dtype == torch.float16: |
|
precision_scope = torch.autocast |
|
else: |
|
precision_scope = contextlib.nullcontext |
|
|
|
with precision_scope(model_management.get_autocast_device(self.device)): |
|
self.control_model = model_management.load_if_low_vram(self.control_model) |
|
control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=cond_txt) |
|
self.control_model = model_management.unload_if_low_vram(self.control_model) |
|
out = {'middle':[], 'output': []} |
|
autocast_enabled = torch.is_autocast_enabled() |
|
|
|
for i in range(len(control)): |
|
if i == (len(control) - 1): |
|
key = 'middle' |
|
index = 0 |
|
else: |
|
key = 'output' |
|
index = i |
|
x = control[i] |
|
x *= self.strength |
|
if x.dtype != output_dtype and not autocast_enabled: |
|
x = x.to(output_dtype) |
|
|
|
if control_prev is not None and key in control_prev: |
|
prev = control_prev[key][index] |
|
if prev is not None: |
|
x += prev |
|
out[key].append(x) |
|
if control_prev is not None and 'input' in control_prev: |
|
out['input'] = control_prev['input'] |
|
return out |
|
|
|
def set_cond_hint(self, cond_hint, strength=1.0): |
|
self.cond_hint_original = cond_hint |
|
self.strength = strength |
|
return self |
|
|
|
def set_previous_controlnet(self, controlnet): |
|
self.previous_controlnet = controlnet |
|
return self |
|
|
|
def cleanup(self): |
|
if self.previous_controlnet is not None: |
|
self.previous_controlnet.cleanup() |
|
if self.cond_hint is not None: |
|
del self.cond_hint |
|
self.cond_hint = None |
|
|
|
def copy(self): |
|
c = ControlNet(self.control_model) |
|
c.cond_hint_original = self.cond_hint_original |
|
c.strength = self.strength |
|
return c |
|
|
|
def get_control_models(self): |
|
out = [] |
|
if self.previous_controlnet is not None: |
|
out += self.previous_controlnet.get_control_models() |
|
out.append(self.control_model) |
|
return out |
|
|
|
def load_controlnet(ckpt_path, model=None): |
|
controlnet_data = load_torch_file(ckpt_path) |
|
pth_key = 'control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight' |
|
pth = False |
|
sd2 = False |
|
key = 'input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight' |
|
if pth_key in controlnet_data: |
|
pth = True |
|
key = pth_key |
|
elif key in controlnet_data: |
|
pass |
|
else: |
|
print("error checkpoint does not contain controlnet data", ckpt_path) |
|
return None |
|
|
|
context_dim = controlnet_data[key].shape[1] |
|
|
|
use_fp16 = False |
|
if model_management.should_use_fp16() and controlnet_data[key].dtype == torch.float16: |
|
use_fp16 = True |
|
|
|
if context_dim == 768: |
|
#SD1.x |
|
control_model = cldm.ControlNet(image_size=32, |
|
in_channels=4, |
|
hint_channels=3, |
|
model_channels=320, |
|
attention_resolutions=[ 4, 2, 1 ], |
|
num_res_blocks=2, |
|
channel_mult=[ 1, 2, 4, 4 ], |
|
num_heads=8, |
|
use_spatial_transformer=True, |
|
transformer_depth=1, |
|
context_dim=context_dim, |
|
use_checkpoint=True, |
|
legacy=False, |
|
use_fp16=use_fp16) |
|
else: |
|
#SD2.x |
|
control_model = cldm.ControlNet(image_size=32, |
|
in_channels=4, |
|
hint_channels=3, |
|
model_channels=320, |
|
attention_resolutions=[ 4, 2, 1 ], |
|
num_res_blocks=2, |
|
channel_mult=[ 1, 2, 4, 4 ], |
|
num_head_channels=64, |
|
use_spatial_transformer=True, |
|
use_linear_in_transformer=True, |
|
transformer_depth=1, |
|
context_dim=context_dim, |
|
use_checkpoint=True, |
|
legacy=False, |
|
use_fp16=use_fp16) |
|
if pth: |
|
if 'difference' in controlnet_data: |
|
if model is not None: |
|
m = model.patch_model() |
|
model_sd = m.state_dict() |
|
for x in controlnet_data: |
|
c_m = "control_model." |
|
if x.startswith(c_m): |
|
sd_key = "model.diffusion_model.{}".format(x[len(c_m):]) |
|
if sd_key in model_sd: |
|
cd = controlnet_data[x] |
|
cd += model_sd[sd_key].type(cd.dtype).to(cd.device) |
|
model.unpatch_model() |
|
else: |
|
print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.") |
|
|
|
class WeightsLoader(torch.nn.Module): |
|
pass |
|
w = WeightsLoader() |
|
w.control_model = control_model |
|
w.load_state_dict(controlnet_data, strict=False) |
|
else: |
|
control_model.load_state_dict(controlnet_data, strict=False) |
|
|
|
control = ControlNet(control_model) |
|
return control |
|
|
|
class T2IAdapter: |
|
def __init__(self, t2i_model, channels_in, device=None): |
|
self.t2i_model = t2i_model |
|
self.channels_in = channels_in |
|
self.strength = 1.0 |
|
if device is None: |
|
device = model_management.get_torch_device() |
|
self.device = device |
|
self.previous_controlnet = None |
|
self.control_input = None |
|
self.cond_hint_original = None |
|
self.cond_hint = None |
|
|
|
def get_control(self, x_noisy, t, cond_txt, batched_number): |
|
control_prev = None |
|
if self.previous_controlnet is not None: |
|
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt, batched_number) |
|
|
|
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]: |
|
if self.cond_hint is not None: |
|
del self.cond_hint |
|
self.cond_hint = None |
|
self.cond_hint = resize_image_to(self.cond_hint_original, x_noisy, batched_number).float().to(self.device) |
|
if self.channels_in == 1 and self.cond_hint.shape[1] > 1: |
|
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True) |
|
self.t2i_model.to(self.device) |
|
self.control_input = self.t2i_model(self.cond_hint) |
|
self.t2i_model.cpu() |
|
|
|
output_dtype = x_noisy.dtype |
|
out = {'input':[]} |
|
|
|
autocast_enabled = torch.is_autocast_enabled() |
|
for i in range(len(self.control_input)): |
|
key = 'input' |
|
x = self.control_input[i] * self.strength |
|
if x.dtype != output_dtype and not autocast_enabled: |
|
x = x.to(output_dtype) |
|
|
|
if control_prev is not None and key in control_prev: |
|
index = len(control_prev[key]) - i * 3 - 3 |
|
prev = control_prev[key][index] |
|
if prev is not None: |
|
x += prev |
|
out[key].insert(0, None) |
|
out[key].insert(0, None) |
|
out[key].insert(0, x) |
|
|
|
if control_prev is not None and 'input' in control_prev: |
|
for i in range(len(out['input'])): |
|
if out['input'][i] is None: |
|
out['input'][i] = control_prev['input'][i] |
|
if control_prev is not None and 'middle' in control_prev: |
|
out['middle'] = control_prev['middle'] |
|
if control_prev is not None and 'output' in control_prev: |
|
out['output'] = control_prev['output'] |
|
return out |
|
|
|
def set_cond_hint(self, cond_hint, strength=1.0): |
|
self.cond_hint_original = cond_hint |
|
self.strength = strength |
|
return self |
|
|
|
def set_previous_controlnet(self, controlnet): |
|
self.previous_controlnet = controlnet |
|
return self |
|
|
|
def copy(self): |
|
c = T2IAdapter(self.t2i_model, self.channels_in) |
|
c.cond_hint_original = self.cond_hint_original |
|
c.strength = self.strength |
|
return c |
|
|
|
def cleanup(self): |
|
if self.previous_controlnet is not None: |
|
self.previous_controlnet.cleanup() |
|
if self.cond_hint is not None: |
|
del self.cond_hint |
|
self.cond_hint = None |
|
|
|
def get_control_models(self): |
|
out = [] |
|
if self.previous_controlnet is not None: |
|
out += self.previous_controlnet.get_control_models() |
|
return out |
|
|
|
def load_t2i_adapter(ckpt_path, model=None): |
|
t2i_data = load_torch_file(ckpt_path) |
|
keys = t2i_data.keys() |
|
if "body.0.in_conv.weight" in keys: |
|
cin = t2i_data['body.0.in_conv.weight'].shape[1] |
|
model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4) |
|
else: |
|
cin = t2i_data['conv_in.weight'].shape[1] |
|
model_ad = adapter.Adapter(cin=cin, channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False) |
|
model_ad.load_state_dict(t2i_data) |
|
return T2IAdapter(model_ad, cin // 64) |
|
|
|
|
|
class StyleModel: |
|
def __init__(self, model, device="cpu"): |
|
self.model = model |
|
|
|
def get_cond(self, input): |
|
return self.model(input.last_hidden_state) |
|
|
|
|
|
def load_style_model(ckpt_path): |
|
model_data = load_torch_file(ckpt_path) |
|
keys = model_data.keys() |
|
if "style_embedding" in keys: |
|
model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8) |
|
else: |
|
raise Exception("invalid style model {}".format(ckpt_path)) |
|
model.load_state_dict(model_data) |
|
return StyleModel(model) |
|
|
|
|
|
def load_clip(ckpt_path, embedding_directory=None): |
|
clip_data = load_torch_file(ckpt_path) |
|
config = {} |
|
if "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data: |
|
config['target'] = 'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder' |
|
else: |
|
config['target'] = 'ldm.modules.encoders.modules.FrozenCLIPEmbedder' |
|
clip = CLIP(config=config, embedding_directory=embedding_directory) |
|
clip.load_from_state_dict(clip_data) |
|
return clip |
|
|
|
def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=None): |
|
config = OmegaConf.load(config_path) |
|
model_config_params = config['model']['params'] |
|
clip_config = model_config_params['cond_stage_config'] |
|
scale_factor = model_config_params['scale_factor'] |
|
vae_config = model_config_params['first_stage_config'] |
|
|
|
clip = None |
|
vae = None |
|
|
|
class WeightsLoader(torch.nn.Module): |
|
pass |
|
|
|
w = WeightsLoader() |
|
load_state_dict_to = [] |
|
if output_vae: |
|
vae = VAE(scale_factor=scale_factor, config=vae_config) |
|
w.first_stage_model = vae.first_stage_model |
|
load_state_dict_to = [w] |
|
|
|
if output_clip: |
|
clip = CLIP(config=clip_config, embedding_directory=embedding_directory) |
|
w.cond_stage_model = clip.cond_stage_model |
|
load_state_dict_to = [w] |
|
|
|
model = instantiate_from_config(config.model) |
|
sd = load_torch_file(ckpt_path) |
|
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to) |
|
return (ModelPatcher(model), clip, vae) |
|
|
|
|
|
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=None): |
|
sd = load_torch_file(ckpt_path) |
|
sd_keys = sd.keys() |
|
clip = None |
|
vae = None |
|
|
|
fp16 = model_management.should_use_fp16() |
|
|
|
class WeightsLoader(torch.nn.Module): |
|
pass |
|
|
|
w = WeightsLoader() |
|
load_state_dict_to = [] |
|
if output_vae: |
|
vae = VAE() |
|
w.first_stage_model = vae.first_stage_model |
|
load_state_dict_to = [w] |
|
|
|
if output_clip: |
|
clip_config = {} |
|
if "cond_stage_model.model.transformer.resblocks.22.attn.out_proj.weight" in sd_keys: |
|
clip_config['target'] = 'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder' |
|
else: |
|
clip_config['target'] = 'ldm.modules.encoders.modules.FrozenCLIPEmbedder' |
|
clip = CLIP(config=clip_config, embedding_directory=embedding_directory) |
|
w.cond_stage_model = clip.cond_stage_model |
|
load_state_dict_to = [w] |
|
|
|
sd_config = { |
|
"linear_start": 0.00085, |
|
"linear_end": 0.012, |
|
"num_timesteps_cond": 1, |
|
"log_every_t": 200, |
|
"timesteps": 1000, |
|
"first_stage_key": "jpg", |
|
"cond_stage_key": "txt", |
|
"image_size": 64, |
|
"channels": 4, |
|
"cond_stage_trainable": False, |
|
"monitor": "val/loss_simple_ema", |
|
"scale_factor": 0.18215, |
|
"use_ema": False, |
|
} |
|
|
|
unet_config = { |
|
"use_checkpoint": True, |
|
"image_size": 32, |
|
"out_channels": 4, |
|
"attention_resolutions": [ |
|
4, |
|
2, |
|
1 |
|
], |
|
"num_res_blocks": 2, |
|
"channel_mult": [ |
|
1, |
|
2, |
|
4, |
|
4 |
|
], |
|
"use_spatial_transformer": True, |
|
"transformer_depth": 1, |
|
"legacy": False |
|
} |
|
|
|
if len(sd['model.diffusion_model.input_blocks.1.1.proj_in.weight'].shape) == 2: |
|
unet_config['use_linear_in_transformer'] = True |
|
|
|
unet_config["use_fp16"] = fp16 |
|
unet_config["model_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[0] |
|
unet_config["in_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[1] |
|
unet_config["context_dim"] = sd['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'].shape[1] |
|
|
|
sd_config["unet_config"] = {"target": "ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config} |
|
model_config = {"target": "ldm.models.diffusion.ddpm.LatentDiffusion", "params": sd_config} |
|
|
|
if unet_config["in_channels"] > 4: #inpainting model |
|
sd_config["conditioning_key"] = "hybrid" |
|
sd_config["finetune_keys"] = None |
|
model_config["target"] = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion" |
|
else: |
|
sd_config["conditioning_key"] = "crossattn" |
|
|
|
if unet_config["context_dim"] == 1024: |
|
unet_config["num_head_channels"] = 64 #SD2.x |
|
else: |
|
unet_config["num_heads"] = 8 #SD1.x |
|
|
|
if unet_config["context_dim"] == 1024 and unet_config["in_channels"] == 4: #only SD2.x non inpainting models are v prediction |
|
k = "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias" |
|
out = sd[k] |
|
if torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out. |
|
sd_config["parameterization"] = 'v' |
|
|
|
model = instantiate_from_config(model_config) |
|
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to) |
|
|
|
return (ModelPatcher(model), clip, vae)
|
|
|