You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1377 lines
50 KiB
1377 lines
50 KiB
# pylint: skip-file |
|
# ----------------------------------------------------------------------------------- |
|
# Swin2SR: Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration, https://arxiv.org/abs/2209.11345 |
|
# Written by Conde and Choi et al. |
|
# From: https://raw.githubusercontent.com/mv-lab/swin2sr/main/models/network_swin2sr.py |
|
# ----------------------------------------------------------------------------------- |
|
|
|
import math |
|
import re |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
|
|
# Originally from the timm package |
|
from .timm.drop import DropPath |
|
from .timm.helpers import to_2tuple |
|
from .timm.weight_init import trunc_normal_ |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__( |
|
self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.GELU, |
|
drop=0.0, |
|
): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
def window_partition(x, window_size): |
|
""" |
|
Args: |
|
x: (B, H, W, C) |
|
window_size (int): window size |
|
Returns: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
""" |
|
B, H, W, C = x.shape |
|
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) |
|
windows = ( |
|
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) |
|
) |
|
return windows |
|
|
|
|
|
def window_reverse(windows, window_size, H, W): |
|
""" |
|
Args: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
window_size (int): Window size |
|
H (int): Height of image |
|
W (int): Width of image |
|
Returns: |
|
x: (B, H, W, C) |
|
""" |
|
B = int(windows.shape[0] / (H * W / window_size / window_size)) |
|
x = windows.view( |
|
B, H // window_size, W // window_size, window_size, window_size, -1 |
|
) |
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) |
|
return x |
|
|
|
|
|
class WindowAttention(nn.Module): |
|
r"""Window based multi-head self attention (W-MSA) module with relative position bias. |
|
It supports both of shifted and non-shifted window. |
|
Args: |
|
dim (int): Number of input channels. |
|
window_size (tuple[int]): The height and width of the window. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 |
|
pretrained_window_size (tuple[int]): The height and width of the window in pre-training. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
window_size, |
|
num_heads, |
|
qkv_bias=True, |
|
attn_drop=0.0, |
|
proj_drop=0.0, |
|
pretrained_window_size=[0, 0], |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.window_size = window_size # Wh, Ww |
|
self.pretrained_window_size = pretrained_window_size |
|
self.num_heads = num_heads |
|
|
|
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True) # type: ignore |
|
|
|
# mlp to generate continuous relative position bias |
|
self.cpb_mlp = nn.Sequential( |
|
nn.Linear(2, 512, bias=True), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(512, num_heads, bias=False), |
|
) |
|
|
|
# get relative_coords_table |
|
relative_coords_h = torch.arange( |
|
-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32 |
|
) |
|
relative_coords_w = torch.arange( |
|
-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32 |
|
) |
|
relative_coords_table = ( |
|
torch.stack(torch.meshgrid([relative_coords_h, relative_coords_w])) |
|
.permute(1, 2, 0) |
|
.contiguous() |
|
.unsqueeze(0) |
|
) # 1, 2*Wh-1, 2*Ww-1, 2 |
|
if pretrained_window_size[0] > 0: |
|
relative_coords_table[:, :, :, 0] /= pretrained_window_size[0] - 1 |
|
relative_coords_table[:, :, :, 1] /= pretrained_window_size[1] - 1 |
|
else: |
|
relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1 |
|
relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1 |
|
relative_coords_table *= 8 # normalize to -8, 8 |
|
relative_coords_table = ( |
|
torch.sign(relative_coords_table) |
|
* torch.log2(torch.abs(relative_coords_table) + 1.0) |
|
/ np.log2(8) |
|
) |
|
|
|
self.register_buffer("relative_coords_table", relative_coords_table) |
|
|
|
# get pair-wise relative position index for each token inside the window |
|
coords_h = torch.arange(self.window_size[0]) |
|
coords_w = torch.arange(self.window_size[1]) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww |
|
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww |
|
relative_coords = ( |
|
coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
) # 2, Wh*Ww, Wh*Ww |
|
relative_coords = relative_coords.permute( |
|
1, 2, 0 |
|
).contiguous() # Wh*Ww, Wh*Ww, 2 |
|
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 |
|
relative_coords[:, :, 1] += self.window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 |
|
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww |
|
self.register_buffer("relative_position_index", relative_position_index) |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=False) |
|
if qkv_bias: |
|
self.q_bias = nn.Parameter(torch.zeros(dim)) # type: ignore |
|
self.v_bias = nn.Parameter(torch.zeros(dim)) # type: ignore |
|
else: |
|
self.q_bias = None |
|
self.v_bias = None |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def forward(self, x, mask=None): |
|
""" |
|
Args: |
|
x: input features with shape of (num_windows*B, N, C) |
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None |
|
""" |
|
B_, N, C = x.shape |
|
qkv_bias = None |
|
if self.q_bias is not None: |
|
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) # type: ignore |
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) |
|
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k, v = ( |
|
qkv[0], |
|
qkv[1], |
|
qkv[2], |
|
) # make torchscript happy (cannot use tensor as tuple) |
|
|
|
# cosine attention |
|
attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1) |
|
logit_scale = torch.clamp( |
|
self.logit_scale, |
|
max=torch.log(torch.tensor(1.0 / 0.01)).to(self.logit_scale.device), |
|
).exp() |
|
attn = attn * logit_scale |
|
|
|
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view( |
|
-1, self.num_heads |
|
) |
|
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view( # type: ignore |
|
self.window_size[0] * self.window_size[1], |
|
self.window_size[0] * self.window_size[1], |
|
-1, |
|
) # Wh*Ww,Wh*Ww,nH |
|
relative_position_bias = relative_position_bias.permute( |
|
2, 0, 1 |
|
).contiguous() # nH, Wh*Ww, Wh*Ww |
|
relative_position_bias = 16 * torch.sigmoid(relative_position_bias) |
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
|
|
if mask is not None: |
|
nW = mask.shape[0] |
|
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze( |
|
1 |
|
).unsqueeze(0) |
|
attn = attn.view(-1, self.num_heads, N, N) |
|
attn = self.softmax(attn) |
|
else: |
|
attn = self.softmax(attn) |
|
|
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return ( |
|
f"dim={self.dim}, window_size={self.window_size}, " |
|
f"pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}" |
|
) |
|
|
|
def flops(self, N): |
|
# calculate flops for 1 window with token length of N |
|
flops = 0 |
|
# qkv = self.qkv(x) |
|
flops += N * self.dim * 3 * self.dim |
|
# attn = (q @ k.transpose(-2, -1)) |
|
flops += self.num_heads * N * (self.dim // self.num_heads) * N |
|
# x = (attn @ v) |
|
flops += self.num_heads * N * N * (self.dim // self.num_heads) |
|
# x = self.proj(x) |
|
flops += N * self.dim * self.dim |
|
return flops |
|
|
|
|
|
class SwinTransformerBlock(nn.Module): |
|
r"""Swin Transformer Block. |
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resulotion. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Window size. |
|
shift_size (int): Shift size for SW-MSA. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0 |
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
pretrained_window_size (int): Window size in pre-training. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
input_resolution, |
|
num_heads, |
|
window_size=7, |
|
shift_size=0, |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
drop=0.0, |
|
attn_drop=0.0, |
|
drop_path=0.0, |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
pretrained_window_size=0, |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.num_heads = num_heads |
|
self.window_size = window_size |
|
self.shift_size = shift_size |
|
self.mlp_ratio = mlp_ratio |
|
if min(self.input_resolution) <= self.window_size: |
|
# if window size is larger than input resolution, we don't partition windows |
|
self.shift_size = 0 |
|
self.window_size = min(self.input_resolution) |
|
assert ( |
|
0 <= self.shift_size < self.window_size |
|
), "shift_size must in 0-window_size" |
|
|
|
self.norm1 = norm_layer(dim) |
|
self.attn = WindowAttention( |
|
dim, |
|
window_size=to_2tuple(self.window_size), |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=drop, |
|
pretrained_window_size=to_2tuple(pretrained_window_size), |
|
) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=drop, |
|
) |
|
|
|
if self.shift_size > 0: |
|
attn_mask = self.calculate_mask(self.input_resolution) |
|
else: |
|
attn_mask = None |
|
|
|
self.register_buffer("attn_mask", attn_mask) |
|
|
|
def calculate_mask(self, x_size): |
|
# calculate attention mask for SW-MSA |
|
H, W = x_size |
|
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 |
|
h_slices = ( |
|
slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None), |
|
) |
|
w_slices = ( |
|
slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None), |
|
) |
|
cnt = 0 |
|
for h in h_slices: |
|
for w in w_slices: |
|
img_mask[:, h, w, :] = cnt |
|
cnt += 1 |
|
|
|
mask_windows = window_partition( |
|
img_mask, self.window_size |
|
) # nW, window_size, window_size, 1 |
|
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) |
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) |
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill( |
|
attn_mask == 0, float(0.0) |
|
) |
|
|
|
return attn_mask |
|
|
|
def forward(self, x, x_size): |
|
H, W = x_size |
|
B, L, C = x.shape |
|
# assert L == H * W, "input feature has wrong size" |
|
|
|
shortcut = x |
|
x = x.view(B, H, W, C) |
|
|
|
# cyclic shift |
|
if self.shift_size > 0: |
|
shifted_x = torch.roll( |
|
x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2) |
|
) |
|
else: |
|
shifted_x = x |
|
|
|
# partition windows |
|
x_windows = window_partition( |
|
shifted_x, self.window_size |
|
) # nW*B, window_size, window_size, C |
|
x_windows = x_windows.view( |
|
-1, self.window_size * self.window_size, C |
|
) # nW*B, window_size*window_size, C |
|
|
|
# W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size |
|
if self.input_resolution == x_size: |
|
attn_windows = self.attn( |
|
x_windows, mask=self.attn_mask |
|
) # nW*B, window_size*window_size, C |
|
else: |
|
attn_windows = self.attn( |
|
x_windows, mask=self.calculate_mask(x_size).to(x.device) |
|
) |
|
|
|
# merge windows |
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) |
|
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C |
|
|
|
# reverse cyclic shift |
|
if self.shift_size > 0: |
|
x = torch.roll( |
|
shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2) |
|
) |
|
else: |
|
x = shifted_x |
|
x = x.view(B, H * W, C) |
|
x = shortcut + self.drop_path(self.norm1(x)) |
|
|
|
# FFN |
|
x = x + self.drop_path(self.norm2(self.mlp(x))) |
|
|
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return ( |
|
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " |
|
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" |
|
) |
|
|
|
def flops(self): |
|
flops = 0 |
|
H, W = self.input_resolution |
|
# norm1 |
|
flops += self.dim * H * W |
|
# W-MSA/SW-MSA |
|
nW = H * W / self.window_size / self.window_size |
|
flops += nW * self.attn.flops(self.window_size * self.window_size) |
|
# mlp |
|
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio |
|
# norm2 |
|
flops += self.dim * H * W |
|
return flops |
|
|
|
|
|
class PatchMerging(nn.Module): |
|
r"""Patch Merging Layer. |
|
Args: |
|
input_resolution (tuple[int]): Resolution of input feature. |
|
dim (int): Number of input channels. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
|
|
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.input_resolution = input_resolution |
|
self.dim = dim |
|
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) |
|
self.norm = norm_layer(2 * dim) |
|
|
|
def forward(self, x): |
|
""" |
|
x: B, H*W, C |
|
""" |
|
H, W = self.input_resolution |
|
B, L, C = x.shape |
|
assert L == H * W, "input feature has wrong size" |
|
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." |
|
|
|
x = x.view(B, H, W, C) |
|
|
|
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C |
|
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C |
|
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C |
|
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C |
|
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C |
|
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C |
|
|
|
x = self.reduction(x) |
|
x = self.norm(x) |
|
|
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return f"input_resolution={self.input_resolution}, dim={self.dim}" |
|
|
|
def flops(self): |
|
H, W = self.input_resolution |
|
flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim |
|
flops += H * W * self.dim // 2 |
|
return flops |
|
|
|
|
|
class BasicLayer(nn.Module): |
|
"""A basic Swin Transformer layer for one stage. |
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resolution. |
|
depth (int): Number of blocks. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Local window size. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
pretrained_window_size (int): Local window size in pre-training. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
input_resolution, |
|
depth, |
|
num_heads, |
|
window_size, |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
drop=0.0, |
|
attn_drop=0.0, |
|
drop_path=0.0, |
|
norm_layer=nn.LayerNorm, |
|
downsample=None, |
|
use_checkpoint=False, |
|
pretrained_window_size=0, |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.depth = depth |
|
self.use_checkpoint = use_checkpoint |
|
|
|
# build blocks |
|
self.blocks = nn.ModuleList( |
|
[ |
|
SwinTransformerBlock( |
|
dim=dim, |
|
input_resolution=input_resolution, |
|
num_heads=num_heads, |
|
window_size=window_size, |
|
shift_size=0 if (i % 2 == 0) else window_size // 2, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
drop=drop, |
|
attn_drop=attn_drop, |
|
drop_path=drop_path[i] |
|
if isinstance(drop_path, list) |
|
else drop_path, |
|
norm_layer=norm_layer, |
|
pretrained_window_size=pretrained_window_size, |
|
) |
|
for i in range(depth) |
|
] |
|
) |
|
|
|
# patch merging layer |
|
if downsample is not None: |
|
self.downsample = downsample( |
|
input_resolution, dim=dim, norm_layer=norm_layer |
|
) |
|
else: |
|
self.downsample = None |
|
|
|
def forward(self, x, x_size): |
|
for blk in self.blocks: |
|
if self.use_checkpoint: |
|
x = checkpoint.checkpoint(blk, x, x_size) |
|
else: |
|
x = blk(x, x_size) |
|
if self.downsample is not None: |
|
x = self.downsample(x) |
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" |
|
|
|
def flops(self): |
|
flops = 0 |
|
for blk in self.blocks: |
|
flops += blk.flops() # type: ignore |
|
if self.downsample is not None: |
|
flops += self.downsample.flops() |
|
return flops |
|
|
|
def _init_respostnorm(self): |
|
for blk in self.blocks: |
|
nn.init.constant_(blk.norm1.bias, 0) # type: ignore |
|
nn.init.constant_(blk.norm1.weight, 0) # type: ignore |
|
nn.init.constant_(blk.norm2.bias, 0) # type: ignore |
|
nn.init.constant_(blk.norm2.weight, 0) # type: ignore |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
r"""Image to Patch Embedding |
|
Args: |
|
img_size (int): Image size. Default: 224. |
|
patch_size (int): Patch token size. Default: 4. |
|
in_chans (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
""" |
|
|
|
def __init__( |
|
self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None |
|
): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] # type: ignore |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.patches_resolution = patches_resolution |
|
self.num_patches = patches_resolution[0] * patches_resolution[1] |
|
|
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
|
|
self.proj = nn.Conv2d( |
|
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size # type: ignore |
|
) |
|
if norm_layer is not None: |
|
self.norm = norm_layer(embed_dim) |
|
else: |
|
self.norm = None |
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
# FIXME look at relaxing size constraints |
|
# assert H == self.img_size[0] and W == self.img_size[1], |
|
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." |
|
x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C |
|
if self.norm is not None: |
|
x = self.norm(x) |
|
return x |
|
|
|
def flops(self): |
|
Ho, Wo = self.patches_resolution |
|
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) # type: ignore |
|
if self.norm is not None: |
|
flops += Ho * Wo * self.embed_dim |
|
return flops |
|
|
|
|
|
class RSTB(nn.Module): |
|
"""Residual Swin Transformer Block (RSTB). |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resolution. |
|
depth (int): Number of blocks. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Local window size. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
img_size: Input image size. |
|
patch_size: Patch size. |
|
resi_connection: The convolutional block before residual connection. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
input_resolution, |
|
depth, |
|
num_heads, |
|
window_size, |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
drop=0.0, |
|
attn_drop=0.0, |
|
drop_path=0.0, |
|
norm_layer=nn.LayerNorm, |
|
downsample=None, |
|
use_checkpoint=False, |
|
img_size=224, |
|
patch_size=4, |
|
resi_connection="1conv", |
|
): |
|
super(RSTB, self).__init__() |
|
|
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
|
|
self.residual_group = BasicLayer( |
|
dim=dim, |
|
input_resolution=input_resolution, |
|
depth=depth, |
|
num_heads=num_heads, |
|
window_size=window_size, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
drop=drop, |
|
attn_drop=attn_drop, |
|
drop_path=drop_path, |
|
norm_layer=norm_layer, |
|
downsample=downsample, |
|
use_checkpoint=use_checkpoint, |
|
) |
|
|
|
if resi_connection == "1conv": |
|
self.conv = nn.Conv2d(dim, dim, 3, 1, 1) |
|
elif resi_connection == "3conv": |
|
# to save parameters and memory |
|
self.conv = nn.Sequential( |
|
nn.Conv2d(dim, dim // 4, 3, 1, 1), |
|
nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), |
|
nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
nn.Conv2d(dim // 4, dim, 3, 1, 1), |
|
) |
|
|
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=dim, |
|
embed_dim=dim, |
|
norm_layer=None, |
|
) |
|
|
|
self.patch_unembed = PatchUnEmbed( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=dim, |
|
embed_dim=dim, |
|
norm_layer=None, |
|
) |
|
|
|
def forward(self, x, x_size): |
|
return ( |
|
self.patch_embed( |
|
self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size)) |
|
) |
|
+ x |
|
) |
|
|
|
def flops(self): |
|
flops = 0 |
|
flops += self.residual_group.flops() |
|
H, W = self.input_resolution |
|
flops += H * W * self.dim * self.dim * 9 |
|
flops += self.patch_embed.flops() |
|
flops += self.patch_unembed.flops() |
|
|
|
return flops |
|
|
|
|
|
class PatchUnEmbed(nn.Module): |
|
r"""Image to Patch Unembedding |
|
|
|
Args: |
|
img_size (int): Image size. Default: 224. |
|
patch_size (int): Patch token size. Default: 4. |
|
in_chans (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
""" |
|
|
|
def __init__( |
|
self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None |
|
): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] # type: ignore |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.patches_resolution = patches_resolution |
|
self.num_patches = patches_resolution[0] * patches_resolution[1] |
|
|
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
|
|
def forward(self, x, x_size): |
|
B, HW, C = x.shape |
|
x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C |
|
return x |
|
|
|
def flops(self): |
|
flops = 0 |
|
return flops |
|
|
|
|
|
class Upsample(nn.Sequential): |
|
"""Upsample module. |
|
|
|
Args: |
|
scale (int): Scale factor. Supported scales: 2^n and 3. |
|
num_feat (int): Channel number of intermediate features. |
|
""" |
|
|
|
def __init__(self, scale, num_feat): |
|
m = [] |
|
if (scale & (scale - 1)) == 0: # scale = 2^n |
|
for _ in range(int(math.log(scale, 2))): |
|
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) |
|
m.append(nn.PixelShuffle(2)) |
|
elif scale == 3: |
|
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) |
|
m.append(nn.PixelShuffle(3)) |
|
else: |
|
raise ValueError( |
|
f"scale {scale} is not supported. " "Supported scales: 2^n and 3." |
|
) |
|
super(Upsample, self).__init__(*m) |
|
|
|
|
|
class Upsample_hf(nn.Sequential): |
|
"""Upsample module. |
|
|
|
Args: |
|
scale (int): Scale factor. Supported scales: 2^n and 3. |
|
num_feat (int): Channel number of intermediate features. |
|
""" |
|
|
|
def __init__(self, scale, num_feat): |
|
m = [] |
|
if (scale & (scale - 1)) == 0: # scale = 2^n |
|
for _ in range(int(math.log(scale, 2))): |
|
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) |
|
m.append(nn.PixelShuffle(2)) |
|
elif scale == 3: |
|
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) |
|
m.append(nn.PixelShuffle(3)) |
|
else: |
|
raise ValueError( |
|
f"scale {scale} is not supported. " "Supported scales: 2^n and 3." |
|
) |
|
super(Upsample_hf, self).__init__(*m) |
|
|
|
|
|
class UpsampleOneStep(nn.Sequential): |
|
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) |
|
Used in lightweight SR to save parameters. |
|
|
|
Args: |
|
scale (int): Scale factor. Supported scales: 2^n and 3. |
|
num_feat (int): Channel number of intermediate features. |
|
|
|
""" |
|
|
|
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None): |
|
self.num_feat = num_feat |
|
self.input_resolution = input_resolution |
|
m = [] |
|
m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1)) |
|
m.append(nn.PixelShuffle(scale)) |
|
super(UpsampleOneStep, self).__init__(*m) |
|
|
|
def flops(self): |
|
H, W = self.input_resolution # type: ignore |
|
flops = H * W * self.num_feat * 3 * 9 |
|
return flops |
|
|
|
|
|
class Swin2SR(nn.Module): |
|
r"""Swin2SR |
|
A PyTorch impl of : `Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration`. |
|
|
|
Args: |
|
img_size (int | tuple(int)): Input image size. Default 64 |
|
patch_size (int | tuple(int)): Patch size. Default: 1 |
|
in_chans (int): Number of input image channels. Default: 3 |
|
embed_dim (int): Patch embedding dimension. Default: 96 |
|
depths (tuple(int)): Depth of each Swin Transformer layer. |
|
num_heads (tuple(int)): Number of attention heads in different layers. |
|
window_size (int): Window size. Default: 7 |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True |
|
drop_rate (float): Dropout rate. Default: 0 |
|
attn_drop_rate (float): Attention dropout rate. Default: 0 |
|
drop_path_rate (float): Stochastic depth rate. Default: 0.1 |
|
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. |
|
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False |
|
patch_norm (bool): If True, add normalization after patch embedding. Default: True |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False |
|
upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction |
|
img_range: Image range. 1. or 255. |
|
upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None |
|
resi_connection: The convolutional block before residual connection. '1conv'/'3conv' |
|
""" |
|
|
|
def __init__( |
|
self, |
|
state_dict, |
|
**kwargs, |
|
): |
|
super(Swin2SR, self).__init__() |
|
|
|
# Defaults |
|
img_size = 128 |
|
patch_size = 1 |
|
in_chans = 3 |
|
embed_dim = 96 |
|
depths = [6, 6, 6, 6] |
|
num_heads = [6, 6, 6, 6] |
|
window_size = 7 |
|
mlp_ratio = 4.0 |
|
qkv_bias = True |
|
drop_rate = 0.0 |
|
attn_drop_rate = 0.0 |
|
drop_path_rate = 0.1 |
|
norm_layer = nn.LayerNorm |
|
ape = False |
|
patch_norm = True |
|
use_checkpoint = False |
|
upscale = 2 |
|
img_range = 1.0 |
|
upsampler = "" |
|
resi_connection = "1conv" |
|
num_in_ch = in_chans |
|
num_out_ch = in_chans |
|
num_feat = 64 |
|
|
|
self.model_arch = "Swin2SR" |
|
self.sub_type = "SR" |
|
self.state = state_dict |
|
if "params_ema" in self.state: |
|
self.state = self.state["params_ema"] |
|
elif "params" in self.state: |
|
self.state = self.state["params"] |
|
|
|
state_keys = self.state.keys() |
|
|
|
if "conv_before_upsample.0.weight" in state_keys: |
|
if "conv_aux.weight" in state_keys: |
|
upsampler = "pixelshuffle_aux" |
|
elif "conv_up1.weight" in state_keys: |
|
upsampler = "nearest+conv" |
|
else: |
|
upsampler = "pixelshuffle" |
|
supports_fp16 = False |
|
elif "upsample.0.weight" in state_keys: |
|
upsampler = "pixelshuffledirect" |
|
else: |
|
upsampler = "" |
|
|
|
num_feat = ( |
|
self.state.get("conv_before_upsample.0.weight", None).shape[1] |
|
if self.state.get("conv_before_upsample.weight", None) |
|
else 64 |
|
) |
|
|
|
num_in_ch = self.state["conv_first.weight"].shape[1] |
|
in_chans = num_in_ch |
|
if "conv_last.weight" in state_keys: |
|
num_out_ch = self.state["conv_last.weight"].shape[0] |
|
else: |
|
num_out_ch = num_in_ch |
|
|
|
upscale = 1 |
|
if upsampler == "nearest+conv": |
|
upsample_keys = [ |
|
x for x in state_keys if "conv_up" in x and "bias" not in x |
|
] |
|
|
|
for upsample_key in upsample_keys: |
|
upscale *= 2 |
|
elif upsampler == "pixelshuffle" or upsampler == "pixelshuffle_aux": |
|
upsample_keys = [ |
|
x |
|
for x in state_keys |
|
if "upsample" in x and "conv" not in x and "bias" not in x |
|
] |
|
for upsample_key in upsample_keys: |
|
shape = self.state[upsample_key].shape[0] |
|
upscale *= math.sqrt(shape // num_feat) |
|
upscale = int(upscale) |
|
elif upsampler == "pixelshuffledirect": |
|
upscale = int( |
|
math.sqrt(self.state["upsample.0.bias"].shape[0] // num_out_ch) |
|
) |
|
|
|
max_layer_num = 0 |
|
max_block_num = 0 |
|
for key in state_keys: |
|
result = re.match( |
|
r"layers.(\d*).residual_group.blocks.(\d*).norm1.weight", key |
|
) |
|
if result: |
|
layer_num, block_num = result.groups() |
|
max_layer_num = max(max_layer_num, int(layer_num)) |
|
max_block_num = max(max_block_num, int(block_num)) |
|
|
|
depths = [max_block_num + 1 for _ in range(max_layer_num + 1)] |
|
|
|
if ( |
|
"layers.0.residual_group.blocks.0.attn.relative_position_bias_table" |
|
in state_keys |
|
): |
|
num_heads_num = self.state[ |
|
"layers.0.residual_group.blocks.0.attn.relative_position_bias_table" |
|
].shape[-1] |
|
num_heads = [num_heads_num for _ in range(max_layer_num + 1)] |
|
else: |
|
num_heads = depths |
|
|
|
embed_dim = self.state["conv_first.weight"].shape[0] |
|
|
|
mlp_ratio = float( |
|
self.state["layers.0.residual_group.blocks.0.mlp.fc1.bias"].shape[0] |
|
/ embed_dim |
|
) |
|
|
|
# TODO: could actually count the layers, but this should do |
|
if "layers.0.conv.4.weight" in state_keys: |
|
resi_connection = "3conv" |
|
else: |
|
resi_connection = "1conv" |
|
|
|
window_size = int( |
|
math.sqrt( |
|
self.state[ |
|
"layers.0.residual_group.blocks.0.attn.relative_position_index" |
|
].shape[0] |
|
) |
|
) |
|
|
|
if "layers.0.residual_group.blocks.1.attn_mask" in state_keys: |
|
img_size = int( |
|
math.sqrt( |
|
self.state["layers.0.residual_group.blocks.1.attn_mask"].shape[0] |
|
) |
|
* window_size |
|
) |
|
|
|
# The JPEG models are the only ones with window-size 7, and they also use this range |
|
img_range = 255.0 if window_size == 7 else 1.0 |
|
|
|
self.in_nc = num_in_ch |
|
self.out_nc = num_out_ch |
|
self.num_feat = num_feat |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.depths = depths |
|
self.window_size = window_size |
|
self.mlp_ratio = mlp_ratio |
|
self.scale = upscale |
|
self.upsampler = upsampler |
|
self.img_size = img_size |
|
self.img_range = img_range |
|
self.resi_connection = resi_connection |
|
|
|
self.supports_fp16 = False # Too much weirdness to support this at the moment |
|
self.supports_bfp16 = True |
|
self.min_size_restriction = 16 |
|
|
|
## END AUTO DETECTION |
|
|
|
if in_chans == 3: |
|
rgb_mean = (0.4488, 0.4371, 0.4040) |
|
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) |
|
else: |
|
self.mean = torch.zeros(1, 1, 1, 1) |
|
self.upscale = upscale |
|
self.upsampler = upsampler |
|
self.window_size = window_size |
|
|
|
##################################################################################################### |
|
################################### 1, shallow feature extraction ################################### |
|
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) |
|
|
|
##################################################################################################### |
|
################################### 2, deep feature extraction ###################################### |
|
self.num_layers = len(depths) |
|
self.embed_dim = embed_dim |
|
self.ape = ape |
|
self.patch_norm = patch_norm |
|
self.num_features = embed_dim |
|
self.mlp_ratio = mlp_ratio |
|
|
|
# split image into non-overlapping patches |
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=embed_dim, |
|
embed_dim=embed_dim, |
|
norm_layer=norm_layer if self.patch_norm else None, |
|
) |
|
num_patches = self.patch_embed.num_patches |
|
patches_resolution = self.patch_embed.patches_resolution |
|
self.patches_resolution = patches_resolution |
|
|
|
# merge non-overlapping patches into image |
|
self.patch_unembed = PatchUnEmbed( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=embed_dim, |
|
embed_dim=embed_dim, |
|
norm_layer=norm_layer if self.patch_norm else None, |
|
) |
|
|
|
# absolute position embedding |
|
if self.ape: |
|
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) # type: ignore |
|
trunc_normal_(self.absolute_pos_embed, std=0.02) |
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
# stochastic depth |
|
dpr = [ |
|
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) |
|
] # stochastic depth decay rule |
|
|
|
# build Residual Swin Transformer blocks (RSTB) |
|
self.layers = nn.ModuleList() |
|
for i_layer in range(self.num_layers): |
|
layer = RSTB( |
|
dim=embed_dim, |
|
input_resolution=(patches_resolution[0], patches_resolution[1]), |
|
depth=depths[i_layer], |
|
num_heads=num_heads[i_layer], |
|
window_size=window_size, |
|
mlp_ratio=self.mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
drop=drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])], # type: ignore # no impact on SR results |
|
norm_layer=norm_layer, |
|
downsample=None, |
|
use_checkpoint=use_checkpoint, |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
resi_connection=resi_connection, |
|
) |
|
self.layers.append(layer) |
|
|
|
if self.upsampler == "pixelshuffle_hf": |
|
self.layers_hf = nn.ModuleList() |
|
for i_layer in range(self.num_layers): |
|
layer = RSTB( |
|
dim=embed_dim, |
|
input_resolution=(patches_resolution[0], patches_resolution[1]), |
|
depth=depths[i_layer], |
|
num_heads=num_heads[i_layer], |
|
window_size=window_size, |
|
mlp_ratio=self.mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
drop=drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])], # type: ignore # no impact on SR results # type: ignore |
|
norm_layer=norm_layer, |
|
downsample=None, |
|
use_checkpoint=use_checkpoint, |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
resi_connection=resi_connection, |
|
) |
|
self.layers_hf.append(layer) |
|
|
|
self.norm = norm_layer(self.num_features) |
|
|
|
# build the last conv layer in deep feature extraction |
|
if resi_connection == "1conv": |
|
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) |
|
elif resi_connection == "3conv": |
|
# to save parameters and memory |
|
self.conv_after_body = nn.Sequential( |
|
nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), |
|
nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), |
|
nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1), |
|
) |
|
|
|
##################################################################################################### |
|
################################ 3, high quality image reconstruction ################################ |
|
if self.upsampler == "pixelshuffle": |
|
# for classical SR |
|
self.conv_before_upsample = nn.Sequential( |
|
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) |
|
) |
|
self.upsample = Upsample(upscale, num_feat) |
|
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) |
|
elif self.upsampler == "pixelshuffle_aux": |
|
self.conv_bicubic = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1) |
|
self.conv_before_upsample = nn.Sequential( |
|
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) |
|
) |
|
self.conv_aux = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) |
|
self.conv_after_aux = nn.Sequential( |
|
nn.Conv2d(3, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) |
|
) |
|
self.upsample = Upsample(upscale, num_feat) |
|
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) |
|
|
|
elif self.upsampler == "pixelshuffle_hf": |
|
self.conv_before_upsample = nn.Sequential( |
|
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) |
|
) |
|
self.upsample = Upsample(upscale, num_feat) |
|
self.upsample_hf = Upsample_hf(upscale, num_feat) |
|
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) |
|
self.conv_first_hf = nn.Sequential( |
|
nn.Conv2d(num_feat, embed_dim, 3, 1, 1), nn.LeakyReLU(inplace=True) |
|
) |
|
self.conv_after_body_hf = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) |
|
self.conv_before_upsample_hf = nn.Sequential( |
|
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) |
|
) |
|
self.conv_last_hf = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) |
|
|
|
elif self.upsampler == "pixelshuffledirect": |
|
# for lightweight SR (to save parameters) |
|
self.upsample = UpsampleOneStep( |
|
upscale, |
|
embed_dim, |
|
num_out_ch, |
|
(patches_resolution[0], patches_resolution[1]), |
|
) |
|
elif self.upsampler == "nearest+conv": |
|
# for real-world SR (less artifacts) |
|
assert self.upscale == 4, "only support x4 now." |
|
self.conv_before_upsample = nn.Sequential( |
|
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) |
|
) |
|
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) |
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) |
|
else: |
|
# for image denoising and JPEG compression artifact reduction |
|
self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1) |
|
|
|
self.apply(self._init_weights) |
|
|
|
self.load_state_dict(state_dict) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=0.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore # type: ignore |
|
def no_weight_decay(self): |
|
return {"absolute_pos_embed"} |
|
|
|
@torch.jit.ignore # type: ignore |
|
def no_weight_decay_keywords(self): |
|
return {"relative_position_bias_table"} |
|
|
|
def check_image_size(self, x): |
|
_, _, h, w = x.size() |
|
mod_pad_h = (self.window_size - h % self.window_size) % self.window_size |
|
mod_pad_w = (self.window_size - w % self.window_size) % self.window_size |
|
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "reflect") |
|
return x |
|
|
|
def forward_features(self, x): |
|
x_size = (x.shape[2], x.shape[3]) |
|
x = self.patch_embed(x) |
|
if self.ape: |
|
x = x + self.absolute_pos_embed |
|
x = self.pos_drop(x) |
|
|
|
for layer in self.layers: |
|
x = layer(x, x_size) |
|
|
|
x = self.norm(x) # B L C |
|
x = self.patch_unembed(x, x_size) |
|
|
|
return x |
|
|
|
def forward_features_hf(self, x): |
|
x_size = (x.shape[2], x.shape[3]) |
|
x = self.patch_embed(x) |
|
if self.ape: |
|
x = x + self.absolute_pos_embed |
|
x = self.pos_drop(x) |
|
|
|
for layer in self.layers_hf: |
|
x = layer(x, x_size) |
|
|
|
x = self.norm(x) # B L C |
|
x = self.patch_unembed(x, x_size) |
|
|
|
return x |
|
|
|
def forward(self, x): |
|
H, W = x.shape[2:] |
|
x = self.check_image_size(x) |
|
|
|
self.mean = self.mean.type_as(x) |
|
x = (x - self.mean) * self.img_range |
|
|
|
if self.upsampler == "pixelshuffle": |
|
# for classical SR |
|
x = self.conv_first(x) |
|
x = self.conv_after_body(self.forward_features(x)) + x |
|
x = self.conv_before_upsample(x) |
|
x = self.conv_last(self.upsample(x)) |
|
elif self.upsampler == "pixelshuffle_aux": |
|
bicubic = F.interpolate( |
|
x, |
|
size=(H * self.upscale, W * self.upscale), |
|
mode="bicubic", |
|
align_corners=False, |
|
) |
|
bicubic = self.conv_bicubic(bicubic) |
|
x = self.conv_first(x) |
|
x = self.conv_after_body(self.forward_features(x)) + x |
|
x = self.conv_before_upsample(x) |
|
aux = self.conv_aux(x) # b, 3, LR_H, LR_W |
|
x = self.conv_after_aux(aux) |
|
x = ( |
|
self.upsample(x)[:, :, : H * self.upscale, : W * self.upscale] |
|
+ bicubic[:, :, : H * self.upscale, : W * self.upscale] |
|
) |
|
x = self.conv_last(x) |
|
aux = aux / self.img_range + self.mean |
|
elif self.upsampler == "pixelshuffle_hf": |
|
# for classical SR with HF |
|
x = self.conv_first(x) |
|
x = self.conv_after_body(self.forward_features(x)) + x |
|
x_before = self.conv_before_upsample(x) |
|
x_out = self.conv_last(self.upsample(x_before)) |
|
|
|
x_hf = self.conv_first_hf(x_before) |
|
x_hf = self.conv_after_body_hf(self.forward_features_hf(x_hf)) + x_hf |
|
x_hf = self.conv_before_upsample_hf(x_hf) |
|
x_hf = self.conv_last_hf(self.upsample_hf(x_hf)) |
|
x = x_out + x_hf |
|
x_hf = x_hf / self.img_range + self.mean |
|
|
|
elif self.upsampler == "pixelshuffledirect": |
|
# for lightweight SR |
|
x = self.conv_first(x) |
|
x = self.conv_after_body(self.forward_features(x)) + x |
|
x = self.upsample(x) |
|
elif self.upsampler == "nearest+conv": |
|
# for real-world SR |
|
x = self.conv_first(x) |
|
x = self.conv_after_body(self.forward_features(x)) + x |
|
x = self.conv_before_upsample(x) |
|
x = self.lrelu( |
|
self.conv_up1( |
|
torch.nn.functional.interpolate(x, scale_factor=2, mode="nearest") |
|
) |
|
) |
|
x = self.lrelu( |
|
self.conv_up2( |
|
torch.nn.functional.interpolate(x, scale_factor=2, mode="nearest") |
|
) |
|
) |
|
x = self.conv_last(self.lrelu(self.conv_hr(x))) |
|
else: |
|
# for image denoising and JPEG compression artifact reduction |
|
x_first = self.conv_first(x) |
|
res = self.conv_after_body(self.forward_features(x_first)) + x_first |
|
x = x + self.conv_last(res) |
|
|
|
x = x / self.img_range + self.mean |
|
if self.upsampler == "pixelshuffle_aux": |
|
# NOTE: I removed an "aux" output here. not sure what that was for |
|
return x[:, :, : H * self.upscale, : W * self.upscale] # type: ignore |
|
|
|
elif self.upsampler == "pixelshuffle_hf": |
|
x_out = x_out / self.img_range + self.mean # type: ignore |
|
return x_out[:, :, : H * self.upscale, : W * self.upscale], x[:, :, : H * self.upscale, : W * self.upscale], x_hf[:, :, : H * self.upscale, : W * self.upscale] # type: ignore |
|
|
|
else: |
|
return x[:, :, : H * self.upscale, : W * self.upscale] |
|
|
|
def flops(self): |
|
flops = 0 |
|
H, W = self.patches_resolution |
|
flops += H * W * 3 * self.embed_dim * 9 |
|
flops += self.patch_embed.flops() |
|
for i, layer in enumerate(self.layers): |
|
flops += layer.flops() # type: ignore |
|
flops += H * W * 3 * self.embed_dim * self.embed_dim |
|
flops += self.upsample.flops() # type: ignore |
|
return flops
|
|
|