You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
277 lines
11 KiB
277 lines
11 KiB
from .k_diffusion import sampling as k_diffusion_sampling |
|
from .k_diffusion import external as k_diffusion_external |
|
import torch |
|
import contextlib |
|
import model_management |
|
|
|
class CFGDenoiser(torch.nn.Module): |
|
def __init__(self, model): |
|
super().__init__() |
|
self.inner_model = model |
|
|
|
def forward(self, x, sigma, uncond, cond, cond_scale): |
|
if len(uncond[0]) == len(cond[0]) and x.shape[0] * x.shape[2] * x.shape[3] < (96 * 96): #TODO check memory instead |
|
x_in = torch.cat([x] * 2) |
|
sigma_in = torch.cat([sigma] * 2) |
|
cond_in = torch.cat([uncond, cond]) |
|
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2) |
|
else: |
|
cond = self.inner_model(x, sigma, cond=cond) |
|
uncond = self.inner_model(x, sigma, cond=uncond) |
|
return uncond + (cond - uncond) * cond_scale |
|
|
|
class CFGDenoiserComplex(torch.nn.Module): |
|
def __init__(self, model): |
|
super().__init__() |
|
self.inner_model = model |
|
def forward(self, x, sigma, uncond, cond, cond_scale): |
|
def get_area_and_mult(cond, x_in, sigma): |
|
area = (x_in.shape[2], x_in.shape[3], 0, 0) |
|
strength = 1.0 |
|
min_sigma = 0.0 |
|
max_sigma = 999.0 |
|
if 'area' in cond[1]: |
|
area = cond[1]['area'] |
|
if 'strength' in cond[1]: |
|
strength = cond[1]['strength'] |
|
if 'min_sigma' in cond[1]: |
|
min_sigma = cond[1]['min_sigma'] |
|
if 'max_sigma' in cond[1]: |
|
max_sigma = cond[1]['max_sigma'] |
|
if sigma < min_sigma or sigma > max_sigma: |
|
return None |
|
input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] |
|
mult = torch.ones_like(input_x) * strength |
|
|
|
rr = 8 |
|
if area[2] != 0: |
|
for t in range(rr): |
|
mult[:,:,area[2]+t:area[2]+1+t,:] *= ((1.0/rr) * (t + 1)) |
|
if (area[0] + area[2]) < x_in.shape[2]: |
|
for t in range(rr): |
|
mult[:,:,area[0] + area[2] - 1 - t:area[0] + area[2] - t,:] *= ((1.0/rr) * (t + 1)) |
|
if area[3] != 0: |
|
for t in range(rr): |
|
mult[:,:,:,area[3]+t:area[3]+1+t] *= ((1.0/rr) * (t + 1)) |
|
if (area[1] + area[3]) < x_in.shape[3]: |
|
for t in range(rr): |
|
mult[:,:,:,area[1] + area[3] - 1 - t:area[1] + area[3] - t] *= ((1.0/rr) * (t + 1)) |
|
return (input_x, mult, cond[0], area) |
|
|
|
def calc_cond_uncond_batch(cond, uncond, x_in, sigma, max_total_area): |
|
out_cond = torch.zeros_like(x_in) |
|
out_count = torch.ones_like(x_in)/100000.0 |
|
|
|
out_uncond = torch.zeros_like(x_in) |
|
out_uncond_count = torch.ones_like(x_in)/100000.0 |
|
|
|
sigma_cmp = sigma[0] |
|
COND = 0 |
|
UNCOND = 1 |
|
|
|
to_run = [] |
|
for x in cond: |
|
p = get_area_and_mult(x, x_in, sigma_cmp) |
|
if p is None: |
|
continue |
|
|
|
to_run += [(p, COND)] |
|
for x in uncond: |
|
p = get_area_and_mult(x, x_in, sigma_cmp) |
|
if p is None: |
|
continue |
|
|
|
to_run += [(p, UNCOND)] |
|
|
|
while len(to_run) > 0: |
|
first = to_run[0] |
|
first_shape = first[0][0].shape |
|
to_batch = [] |
|
for x in range(len(to_run)): |
|
if to_run[x][0][0].shape == first_shape: |
|
if to_run[x][0][2].shape == first[0][2].shape: |
|
to_batch += [x] |
|
if (len(to_batch) * first_shape[0] * first_shape[2] * first_shape[3] >= max_total_area): |
|
break |
|
|
|
to_batch.reverse() |
|
input_x = [] |
|
mult = [] |
|
c = [] |
|
cond_or_uncond = [] |
|
area = [] |
|
for x in to_batch: |
|
o = to_run.pop(x) |
|
p = o[0] |
|
input_x += [p[0]] |
|
mult += [p[1]] |
|
c += [p[2]] |
|
area += [p[3]] |
|
cond_or_uncond += [o[1]] |
|
|
|
batch_chunks = len(cond_or_uncond) |
|
input_x = torch.cat(input_x) |
|
c = torch.cat(c) |
|
sigma_ = torch.cat([sigma] * batch_chunks) |
|
|
|
output = self.inner_model(input_x, sigma_, cond=c).chunk(batch_chunks) |
|
del input_x |
|
|
|
for o in range(batch_chunks): |
|
if cond_or_uncond[o] == COND: |
|
out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o] |
|
out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o] |
|
else: |
|
out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o] |
|
out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o] |
|
del mult |
|
|
|
out_cond /= out_count |
|
del out_count |
|
out_uncond /= out_uncond_count |
|
del out_uncond_count |
|
|
|
return out_cond, out_uncond |
|
|
|
|
|
max_total_area = model_management.maximum_batch_area() |
|
cond, uncond = calc_cond_uncond_batch(cond, uncond, x, sigma, max_total_area) |
|
return uncond + (cond - uncond) * cond_scale |
|
|
|
def simple_scheduler(model, steps): |
|
sigs = [] |
|
ss = len(model.sigmas) / steps |
|
for x in range(steps): |
|
sigs += [float(model.sigmas[-(1 + int(x * ss))])] |
|
sigs += [0.0] |
|
return torch.FloatTensor(sigs) |
|
|
|
def create_cond_with_same_area_if_none(conds, c): |
|
if 'area' not in c[1]: |
|
return |
|
|
|
c_area = c[1]['area'] |
|
smallest = None |
|
for x in conds: |
|
if 'area' in x[1]: |
|
a = x[1]['area'] |
|
if c_area[2] >= a[2] and c_area[3] >= a[3]: |
|
if a[0] + a[2] >= c_area[0] + c_area[2]: |
|
if a[1] + a[3] >= c_area[1] + c_area[3]: |
|
if smallest is None: |
|
smallest = x |
|
elif 'area' not in smallest[1]: |
|
smallest = x |
|
else: |
|
if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]: |
|
smallest = x |
|
else: |
|
if smallest is None: |
|
smallest = x |
|
if smallest is None: |
|
return |
|
if 'area' in smallest[1]: |
|
if smallest[1]['area'] == c_area: |
|
return |
|
n = c[1].copy() |
|
conds += [[smallest[0], n]] |
|
|
|
class KSampler: |
|
SCHEDULERS = ["karras", "normal", "simple"] |
|
SAMPLERS = ["sample_euler", "sample_euler_ancestral", "sample_heun", "sample_dpm_2", "sample_dpm_2_ancestral", |
|
"sample_lms", "sample_dpm_fast", "sample_dpm_adaptive", "sample_dpmpp_2s_ancestral", "sample_dpmpp_sde", |
|
"sample_dpmpp_2m"] |
|
|
|
def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None): |
|
self.model = model |
|
if self.model.parameterization == "v": |
|
self.model_wrap = k_diffusion_external.CompVisVDenoiser(self.model, quantize=True) |
|
else: |
|
self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model, quantize=True) |
|
self.model_k = CFGDenoiserComplex(self.model_wrap) |
|
self.device = device |
|
if scheduler not in self.SCHEDULERS: |
|
scheduler = self.SCHEDULERS[0] |
|
if sampler not in self.SAMPLERS: |
|
sampler = self.SAMPLERS[0] |
|
self.scheduler = scheduler |
|
self.sampler = sampler |
|
self.sigma_min=float(self.model_wrap.sigmas[0]) |
|
self.sigma_max=float(self.model_wrap.sigmas[-1]) |
|
self.set_steps(steps, denoise) |
|
|
|
def _calculate_sigmas(self, steps): |
|
sigmas = None |
|
|
|
discard_penultimate_sigma = False |
|
if self.sampler in ['sample_dpm_2', 'sample_dpm_2_ancestral']: |
|
steps += 1 |
|
discard_penultimate_sigma = True |
|
|
|
if self.scheduler == "karras": |
|
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max, device=self.device) |
|
elif self.scheduler == "normal": |
|
sigmas = self.model_wrap.get_sigmas(steps).to(self.device) |
|
elif self.scheduler == "simple": |
|
sigmas = simple_scheduler(self.model_wrap, steps).to(self.device) |
|
else: |
|
print("error invalid scheduler", self.scheduler) |
|
|
|
if discard_penultimate_sigma: |
|
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) |
|
return sigmas |
|
|
|
def set_steps(self, steps, denoise=None): |
|
self.steps = steps |
|
if denoise is None: |
|
self.sigmas = self._calculate_sigmas(steps) |
|
else: |
|
new_steps = int(steps/denoise) |
|
sigmas = self._calculate_sigmas(new_steps) |
|
self.sigmas = sigmas[-(steps + 1):] |
|
|
|
|
|
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False): |
|
sigmas = self.sigmas |
|
sigma_min = self.sigma_min |
|
|
|
if last_step is not None and last_step < (len(sigmas) - 1): |
|
sigma_min = sigmas[last_step] |
|
sigmas = sigmas[:last_step + 1] |
|
if force_full_denoise: |
|
sigmas[-1] = 0 |
|
|
|
if start_step is not None: |
|
if start_step < (len(sigmas) - 1): |
|
sigmas = sigmas[start_step:] |
|
else: |
|
if latent_image is not None: |
|
return latent_image |
|
else: |
|
return torch.zeros_like(noise) |
|
|
|
noise *= sigmas[0] |
|
if latent_image is not None: |
|
noise += latent_image |
|
|
|
positive = positive[:] |
|
negative = negative[:] |
|
#make sure each cond area has an opposite one with the same area |
|
for c in positive: |
|
create_cond_with_same_area_if_none(negative, c) |
|
for c in negative: |
|
create_cond_with_same_area_if_none(positive, c) |
|
|
|
if self.model.model.diffusion_model.dtype == torch.float16: |
|
precision_scope = torch.autocast |
|
else: |
|
precision_scope = contextlib.nullcontext |
|
|
|
with precision_scope(self.device): |
|
if self.sampler == "sample_dpm_fast": |
|
samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], self.steps, extra_args={"cond":positive, "uncond":negative, "cond_scale": cfg}) |
|
elif self.sampler == "sample_dpm_adaptive": |
|
samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args={"cond":positive, "uncond":negative, "cond_scale": cfg}) |
|
else: |
|
samples = getattr(k_diffusion_sampling, self.sampler)(self.model_k, noise, sigmas, extra_args={"cond":positive, "uncond":negative, "cond_scale": cfg}) |
|
return samples.to(torch.float32)
|
|
|