The most powerful and modular stable diffusion GUI, api and backend with a graph/nodes interface.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

277 lines
11 KiB

from .k_diffusion import sampling as k_diffusion_sampling
from .k_diffusion import external as k_diffusion_external
import torch
import contextlib
import model_management
class CFGDenoiser(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, x, sigma, uncond, cond, cond_scale):
if len(uncond[0]) == len(cond[0]) and x.shape[0] * x.shape[2] * x.shape[3] < (96 * 96): #TODO check memory instead
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigma] * 2)
cond_in = torch.cat([uncond, cond])
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
else:
cond = self.inner_model(x, sigma, cond=cond)
uncond = self.inner_model(x, sigma, cond=uncond)
return uncond + (cond - uncond) * cond_scale
class CFGDenoiserComplex(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, x, sigma, uncond, cond, cond_scale):
def get_area_and_mult(cond, x_in, sigma):
area = (x_in.shape[2], x_in.shape[3], 0, 0)
strength = 1.0
min_sigma = 0.0
max_sigma = 999.0
if 'area' in cond[1]:
area = cond[1]['area']
if 'strength' in cond[1]:
strength = cond[1]['strength']
if 'min_sigma' in cond[1]:
min_sigma = cond[1]['min_sigma']
if 'max_sigma' in cond[1]:
max_sigma = cond[1]['max_sigma']
if sigma < min_sigma or sigma > max_sigma:
return None
input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
mult = torch.ones_like(input_x) * strength
rr = 8
if area[2] != 0:
for t in range(rr):
mult[:,:,area[2]+t:area[2]+1+t,:] *= ((1.0/rr) * (t + 1))
if (area[0] + area[2]) < x_in.shape[2]:
for t in range(rr):
mult[:,:,area[0] + area[2] - 1 - t:area[0] + area[2] - t,:] *= ((1.0/rr) * (t + 1))
if area[3] != 0:
for t in range(rr):
mult[:,:,:,area[3]+t:area[3]+1+t] *= ((1.0/rr) * (t + 1))
if (area[1] + area[3]) < x_in.shape[3]:
for t in range(rr):
mult[:,:,:,area[1] + area[3] - 1 - t:area[1] + area[3] - t] *= ((1.0/rr) * (t + 1))
return (input_x, mult, cond[0], area)
def calc_cond_uncond_batch(cond, uncond, x_in, sigma, max_total_area):
out_cond = torch.zeros_like(x_in)
out_count = torch.ones_like(x_in)/100000.0
out_uncond = torch.zeros_like(x_in)
out_uncond_count = torch.ones_like(x_in)/100000.0
sigma_cmp = sigma[0]
COND = 0
UNCOND = 1
to_run = []
for x in cond:
p = get_area_and_mult(x, x_in, sigma_cmp)
if p is None:
continue
to_run += [(p, COND)]
for x in uncond:
p = get_area_and_mult(x, x_in, sigma_cmp)
if p is None:
continue
to_run += [(p, UNCOND)]
while len(to_run) > 0:
first = to_run[0]
first_shape = first[0][0].shape
to_batch = []
for x in range(len(to_run)):
if to_run[x][0][0].shape == first_shape:
if to_run[x][0][2].shape == first[0][2].shape:
to_batch += [x]
if (len(to_batch) * first_shape[0] * first_shape[2] * first_shape[3] >= max_total_area):
break
to_batch.reverse()
input_x = []
mult = []
c = []
cond_or_uncond = []
area = []
for x in to_batch:
o = to_run.pop(x)
p = o[0]
input_x += [p[0]]
mult += [p[1]]
c += [p[2]]
area += [p[3]]
cond_or_uncond += [o[1]]
batch_chunks = len(cond_or_uncond)
input_x = torch.cat(input_x)
c = torch.cat(c)
sigma_ = torch.cat([sigma] * batch_chunks)
output = self.inner_model(input_x, sigma_, cond=c).chunk(batch_chunks)
del input_x
for o in range(batch_chunks):
if cond_or_uncond[o] == COND:
out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
else:
out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
del mult
out_cond /= out_count
del out_count
out_uncond /= out_uncond_count
del out_uncond_count
return out_cond, out_uncond
max_total_area = model_management.maximum_batch_area()
cond, uncond = calc_cond_uncond_batch(cond, uncond, x, sigma, max_total_area)
return uncond + (cond - uncond) * cond_scale
def simple_scheduler(model, steps):
sigs = []
ss = len(model.sigmas) / steps
for x in range(steps):
sigs += [float(model.sigmas[-(1 + int(x * ss))])]
sigs += [0.0]
return torch.FloatTensor(sigs)
def create_cond_with_same_area_if_none(conds, c):
if 'area' not in c[1]:
return
c_area = c[1]['area']
smallest = None
for x in conds:
if 'area' in x[1]:
a = x[1]['area']
if c_area[2] >= a[2] and c_area[3] >= a[3]:
if a[0] + a[2] >= c_area[0] + c_area[2]:
if a[1] + a[3] >= c_area[1] + c_area[3]:
if smallest is None:
smallest = x
elif 'area' not in smallest[1]:
smallest = x
else:
if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]:
smallest = x
else:
if smallest is None:
smallest = x
if smallest is None:
return
if 'area' in smallest[1]:
if smallest[1]['area'] == c_area:
return
n = c[1].copy()
conds += [[smallest[0], n]]
class KSampler:
SCHEDULERS = ["karras", "normal", "simple"]
SAMPLERS = ["sample_euler", "sample_euler_ancestral", "sample_heun", "sample_dpm_2", "sample_dpm_2_ancestral",
"sample_lms", "sample_dpm_fast", "sample_dpm_adaptive", "sample_dpmpp_2s_ancestral", "sample_dpmpp_sde",
"sample_dpmpp_2m"]
def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None):
self.model = model
if self.model.parameterization == "v":
self.model_wrap = k_diffusion_external.CompVisVDenoiser(self.model, quantize=True)
else:
self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model, quantize=True)
self.model_k = CFGDenoiserComplex(self.model_wrap)
self.device = device
if scheduler not in self.SCHEDULERS:
scheduler = self.SCHEDULERS[0]
if sampler not in self.SAMPLERS:
sampler = self.SAMPLERS[0]
self.scheduler = scheduler
self.sampler = sampler
self.sigma_min=float(self.model_wrap.sigmas[0])
self.sigma_max=float(self.model_wrap.sigmas[-1])
self.set_steps(steps, denoise)
def _calculate_sigmas(self, steps):
sigmas = None
discard_penultimate_sigma = False
if self.sampler in ['sample_dpm_2', 'sample_dpm_2_ancestral']:
steps += 1
discard_penultimate_sigma = True
if self.scheduler == "karras":
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max, device=self.device)
elif self.scheduler == "normal":
sigmas = self.model_wrap.get_sigmas(steps).to(self.device)
elif self.scheduler == "simple":
sigmas = simple_scheduler(self.model_wrap, steps).to(self.device)
else:
print("error invalid scheduler", self.scheduler)
if discard_penultimate_sigma:
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
return sigmas
def set_steps(self, steps, denoise=None):
self.steps = steps
if denoise is None:
self.sigmas = self._calculate_sigmas(steps)
else:
new_steps = int(steps/denoise)
sigmas = self._calculate_sigmas(new_steps)
self.sigmas = sigmas[-(steps + 1):]
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False):
sigmas = self.sigmas
sigma_min = self.sigma_min
if last_step is not None and last_step < (len(sigmas) - 1):
sigma_min = sigmas[last_step]
sigmas = sigmas[:last_step + 1]
if force_full_denoise:
sigmas[-1] = 0
if start_step is not None:
if start_step < (len(sigmas) - 1):
sigmas = sigmas[start_step:]
else:
if latent_image is not None:
return latent_image
else:
return torch.zeros_like(noise)
noise *= sigmas[0]
if latent_image is not None:
noise += latent_image
positive = positive[:]
negative = negative[:]
#make sure each cond area has an opposite one with the same area
for c in positive:
create_cond_with_same_area_if_none(negative, c)
for c in negative:
create_cond_with_same_area_if_none(positive, c)
if self.model.model.diffusion_model.dtype == torch.float16:
precision_scope = torch.autocast
else:
precision_scope = contextlib.nullcontext
with precision_scope(self.device):
if self.sampler == "sample_dpm_fast":
samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], self.steps, extra_args={"cond":positive, "uncond":negative, "cond_scale": cfg})
elif self.sampler == "sample_dpm_adaptive":
samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args={"cond":positive, "uncond":negative, "cond_scale": cfg})
else:
samples = getattr(k_diffusion_sampling, self.sampler)(self.model_k, noise, sigmas, extra_args={"cond":positive, "uncond":negative, "cond_scale": cfg})
return samples.to(torch.float32)