You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1391 lines
56 KiB
1391 lines
56 KiB
import torch |
|
import contextlib |
|
import copy |
|
import inspect |
|
|
|
from comfy import model_management |
|
from .ldm.util import instantiate_from_config |
|
from .ldm.models.autoencoder import AutoencoderKL |
|
import yaml |
|
from .cldm import cldm |
|
from .t2i_adapter import adapter |
|
|
|
from . import utils |
|
from . import clip_vision |
|
from . import gligen |
|
from . import diffusers_convert |
|
from . import model_base |
|
from . import model_detection |
|
|
|
from . import sd1_clip |
|
from . import sd2_clip |
|
from . import sdxl_clip |
|
|
|
def load_model_weights(model, sd): |
|
m, u = model.load_state_dict(sd, strict=False) |
|
m = set(m) |
|
unexpected_keys = set(u) |
|
|
|
k = list(sd.keys()) |
|
for x in k: |
|
if x not in unexpected_keys: |
|
w = sd.pop(x) |
|
del w |
|
if len(m) > 0: |
|
print("missing", m) |
|
return model |
|
|
|
def load_clip_weights(model, sd): |
|
k = list(sd.keys()) |
|
for x in k: |
|
if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."): |
|
y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.") |
|
sd[y] = sd.pop(x) |
|
|
|
if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd: |
|
ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] |
|
if ids.dtype == torch.float32: |
|
sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round() |
|
|
|
sd = utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24) |
|
return load_model_weights(model, sd) |
|
|
|
LORA_CLIP_MAP = { |
|
"mlp.fc1": "mlp_fc1", |
|
"mlp.fc2": "mlp_fc2", |
|
"self_attn.k_proj": "self_attn_k_proj", |
|
"self_attn.q_proj": "self_attn_q_proj", |
|
"self_attn.v_proj": "self_attn_v_proj", |
|
"self_attn.out_proj": "self_attn_out_proj", |
|
} |
|
|
|
|
|
def load_lora(lora, to_load): |
|
patch_dict = {} |
|
loaded_keys = set() |
|
for x in to_load: |
|
alpha_name = "{}.alpha".format(x) |
|
alpha = None |
|
if alpha_name in lora.keys(): |
|
alpha = lora[alpha_name].item() |
|
loaded_keys.add(alpha_name) |
|
|
|
regular_lora = "{}.lora_up.weight".format(x) |
|
diffusers_lora = "{}_lora.up.weight".format(x) |
|
transformers_lora = "{}.lora_linear_layer.up.weight".format(x) |
|
A_name = None |
|
|
|
if regular_lora in lora.keys(): |
|
A_name = regular_lora |
|
B_name = "{}.lora_down.weight".format(x) |
|
mid_name = "{}.lora_mid.weight".format(x) |
|
elif diffusers_lora in lora.keys(): |
|
A_name = diffusers_lora |
|
B_name = "{}_lora.down.weight".format(x) |
|
mid_name = None |
|
elif transformers_lora in lora.keys(): |
|
A_name = transformers_lora |
|
B_name ="{}.lora_linear_layer.down.weight".format(x) |
|
mid_name = None |
|
|
|
if A_name is not None: |
|
mid = None |
|
if mid_name is not None and mid_name in lora.keys(): |
|
mid = lora[mid_name] |
|
loaded_keys.add(mid_name) |
|
patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid) |
|
loaded_keys.add(A_name) |
|
loaded_keys.add(B_name) |
|
|
|
|
|
######## loha |
|
hada_w1_a_name = "{}.hada_w1_a".format(x) |
|
hada_w1_b_name = "{}.hada_w1_b".format(x) |
|
hada_w2_a_name = "{}.hada_w2_a".format(x) |
|
hada_w2_b_name = "{}.hada_w2_b".format(x) |
|
hada_t1_name = "{}.hada_t1".format(x) |
|
hada_t2_name = "{}.hada_t2".format(x) |
|
if hada_w1_a_name in lora.keys(): |
|
hada_t1 = None |
|
hada_t2 = None |
|
if hada_t1_name in lora.keys(): |
|
hada_t1 = lora[hada_t1_name] |
|
hada_t2 = lora[hada_t2_name] |
|
loaded_keys.add(hada_t1_name) |
|
loaded_keys.add(hada_t2_name) |
|
|
|
patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2) |
|
loaded_keys.add(hada_w1_a_name) |
|
loaded_keys.add(hada_w1_b_name) |
|
loaded_keys.add(hada_w2_a_name) |
|
loaded_keys.add(hada_w2_b_name) |
|
|
|
|
|
######## lokr |
|
lokr_w1_name = "{}.lokr_w1".format(x) |
|
lokr_w2_name = "{}.lokr_w2".format(x) |
|
lokr_w1_a_name = "{}.lokr_w1_a".format(x) |
|
lokr_w1_b_name = "{}.lokr_w1_b".format(x) |
|
lokr_t2_name = "{}.lokr_t2".format(x) |
|
lokr_w2_a_name = "{}.lokr_w2_a".format(x) |
|
lokr_w2_b_name = "{}.lokr_w2_b".format(x) |
|
|
|
lokr_w1 = None |
|
if lokr_w1_name in lora.keys(): |
|
lokr_w1 = lora[lokr_w1_name] |
|
loaded_keys.add(lokr_w1_name) |
|
|
|
lokr_w2 = None |
|
if lokr_w2_name in lora.keys(): |
|
lokr_w2 = lora[lokr_w2_name] |
|
loaded_keys.add(lokr_w2_name) |
|
|
|
lokr_w1_a = None |
|
if lokr_w1_a_name in lora.keys(): |
|
lokr_w1_a = lora[lokr_w1_a_name] |
|
loaded_keys.add(lokr_w1_a_name) |
|
|
|
lokr_w1_b = None |
|
if lokr_w1_b_name in lora.keys(): |
|
lokr_w1_b = lora[lokr_w1_b_name] |
|
loaded_keys.add(lokr_w1_b_name) |
|
|
|
lokr_w2_a = None |
|
if lokr_w2_a_name in lora.keys(): |
|
lokr_w2_a = lora[lokr_w2_a_name] |
|
loaded_keys.add(lokr_w2_a_name) |
|
|
|
lokr_w2_b = None |
|
if lokr_w2_b_name in lora.keys(): |
|
lokr_w2_b = lora[lokr_w2_b_name] |
|
loaded_keys.add(lokr_w2_b_name) |
|
|
|
lokr_t2 = None |
|
if lokr_t2_name in lora.keys(): |
|
lokr_t2 = lora[lokr_t2_name] |
|
loaded_keys.add(lokr_t2_name) |
|
|
|
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None): |
|
patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2) |
|
|
|
for x in lora.keys(): |
|
if x not in loaded_keys: |
|
print("lora key not loaded", x) |
|
return patch_dict |
|
|
|
def model_lora_keys_clip(model, key_map={}): |
|
sdk = model.state_dict().keys() |
|
|
|
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}" |
|
clip_l_present = False |
|
for b in range(32): |
|
for c in LORA_CLIP_MAP: |
|
k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) |
|
if k in sdk: |
|
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c]) |
|
key_map[lora_key] = k |
|
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) |
|
key_map[lora_key] = k |
|
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora |
|
key_map[lora_key] = k |
|
|
|
k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) |
|
if k in sdk: |
|
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base |
|
key_map[lora_key] = k |
|
clip_l_present = True |
|
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora |
|
key_map[lora_key] = k |
|
|
|
k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) |
|
if k in sdk: |
|
if clip_l_present: |
|
lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base |
|
key_map[lora_key] = k |
|
lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora |
|
key_map[lora_key] = k |
|
else: |
|
lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner |
|
key_map[lora_key] = k |
|
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora |
|
key_map[lora_key] = k |
|
|
|
return key_map |
|
|
|
def model_lora_keys_unet(model, key_map={}): |
|
sdk = model.state_dict().keys() |
|
|
|
for k in sdk: |
|
if k.startswith("diffusion_model.") and k.endswith(".weight"): |
|
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_") |
|
key_map["lora_unet_{}".format(key_lora)] = k |
|
|
|
diffusers_keys = utils.unet_to_diffusers(model.model_config.unet_config) |
|
for k in diffusers_keys: |
|
if k.endswith(".weight"): |
|
unet_key = "diffusion_model.{}".format(diffusers_keys[k]) |
|
key_lora = k[:-len(".weight")].replace(".", "_") |
|
key_map["lora_unet_{}".format(key_lora)] = unet_key |
|
|
|
diffusers_lora_prefix = ["", "unet."] |
|
for p in diffusers_lora_prefix: |
|
diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_")) |
|
if diffusers_lora_key.endswith(".to_out.0"): |
|
diffusers_lora_key = diffusers_lora_key[:-2] |
|
key_map[diffusers_lora_key] = unet_key |
|
return key_map |
|
|
|
def set_attr(obj, attr, value): |
|
attrs = attr.split(".") |
|
for name in attrs[:-1]: |
|
obj = getattr(obj, name) |
|
prev = getattr(obj, attrs[-1]) |
|
setattr(obj, attrs[-1], torch.nn.Parameter(value)) |
|
del prev |
|
|
|
class ModelPatcher: |
|
def __init__(self, model, load_device, offload_device, size=0, current_device=None): |
|
self.size = size |
|
self.model = model |
|
self.patches = {} |
|
self.backup = {} |
|
self.model_options = {"transformer_options":{}} |
|
self.model_size() |
|
self.load_device = load_device |
|
self.offload_device = offload_device |
|
if current_device is None: |
|
self.current_device = self.offload_device |
|
else: |
|
self.current_device = current_device |
|
|
|
def model_size(self): |
|
if self.size > 0: |
|
return self.size |
|
model_sd = self.model.state_dict() |
|
size = 0 |
|
for k in model_sd: |
|
t = model_sd[k] |
|
size += t.nelement() * t.element_size() |
|
self.size = size |
|
self.model_keys = set(model_sd.keys()) |
|
return size |
|
|
|
def clone(self): |
|
n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device) |
|
n.patches = {} |
|
for k in self.patches: |
|
n.patches[k] = self.patches[k][:] |
|
|
|
n.model_options = copy.deepcopy(self.model_options) |
|
n.model_keys = self.model_keys |
|
return n |
|
|
|
def is_clone(self, other): |
|
if hasattr(other, 'model') and self.model is other.model: |
|
return True |
|
return False |
|
|
|
def set_model_sampler_cfg_function(self, sampler_cfg_function): |
|
if len(inspect.signature(sampler_cfg_function).parameters) == 3: |
|
self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way |
|
else: |
|
self.model_options["sampler_cfg_function"] = sampler_cfg_function |
|
|
|
def set_model_unet_function_wrapper(self, unet_wrapper_function): |
|
self.model_options["model_function_wrapper"] = unet_wrapper_function |
|
|
|
def set_model_patch(self, patch, name): |
|
to = self.model_options["transformer_options"] |
|
if "patches" not in to: |
|
to["patches"] = {} |
|
to["patches"][name] = to["patches"].get(name, []) + [patch] |
|
|
|
def set_model_patch_replace(self, patch, name, block_name, number): |
|
to = self.model_options["transformer_options"] |
|
if "patches_replace" not in to: |
|
to["patches_replace"] = {} |
|
if name not in to["patches_replace"]: |
|
to["patches_replace"][name] = {} |
|
to["patches_replace"][name][(block_name, number)] = patch |
|
|
|
def set_model_attn1_patch(self, patch): |
|
self.set_model_patch(patch, "attn1_patch") |
|
|
|
def set_model_attn2_patch(self, patch): |
|
self.set_model_patch(patch, "attn2_patch") |
|
|
|
def set_model_attn1_replace(self, patch, block_name, number): |
|
self.set_model_patch_replace(patch, "attn1", block_name, number) |
|
|
|
def set_model_attn2_replace(self, patch, block_name, number): |
|
self.set_model_patch_replace(patch, "attn2", block_name, number) |
|
|
|
def set_model_attn1_output_patch(self, patch): |
|
self.set_model_patch(patch, "attn1_output_patch") |
|
|
|
def set_model_attn2_output_patch(self, patch): |
|
self.set_model_patch(patch, "attn2_output_patch") |
|
|
|
def model_patches_to(self, device): |
|
to = self.model_options["transformer_options"] |
|
if "patches" in to: |
|
patches = to["patches"] |
|
for name in patches: |
|
patch_list = patches[name] |
|
for i in range(len(patch_list)): |
|
if hasattr(patch_list[i], "to"): |
|
patch_list[i] = patch_list[i].to(device) |
|
if "patches_replace" in to: |
|
patches = to["patches_replace"] |
|
for name in patches: |
|
patch_list = patches[name] |
|
for k in patch_list: |
|
if hasattr(patch_list[k], "to"): |
|
patch_list[k] = patch_list[k].to(device) |
|
|
|
def model_dtype(self): |
|
if hasattr(self.model, "get_dtype"): |
|
return self.model.get_dtype() |
|
|
|
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0): |
|
p = set() |
|
for k in patches: |
|
if k in self.model_keys: |
|
p.add(k) |
|
current_patches = self.patches.get(k, []) |
|
current_patches.append((strength_patch, patches[k], strength_model)) |
|
self.patches[k] = current_patches |
|
|
|
return list(p) |
|
|
|
def get_key_patches(self, filter_prefix=None): |
|
model_sd = self.model_state_dict() |
|
p = {} |
|
for k in model_sd: |
|
if filter_prefix is not None: |
|
if not k.startswith(filter_prefix): |
|
continue |
|
if k in self.patches: |
|
p[k] = [model_sd[k]] + self.patches[k] |
|
else: |
|
p[k] = (model_sd[k],) |
|
return p |
|
|
|
def model_state_dict(self, filter_prefix=None): |
|
sd = self.model.state_dict() |
|
keys = list(sd.keys()) |
|
if filter_prefix is not None: |
|
for k in keys: |
|
if not k.startswith(filter_prefix): |
|
sd.pop(k) |
|
return sd |
|
|
|
def patch_model(self, device_to=None): |
|
model_sd = self.model_state_dict() |
|
for key in self.patches: |
|
if key not in model_sd: |
|
print("could not patch. key doesn't exist in model:", k) |
|
continue |
|
|
|
weight = model_sd[key] |
|
|
|
if key not in self.backup: |
|
self.backup[key] = weight.to(self.offload_device) |
|
|
|
if device_to is not None: |
|
temp_weight = weight.float().to(device_to, copy=True) |
|
else: |
|
temp_weight = weight.to(torch.float32, copy=True) |
|
out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype) |
|
set_attr(self.model, key, out_weight) |
|
del temp_weight |
|
|
|
if device_to is not None: |
|
self.model.to(device_to) |
|
self.current_device = device_to |
|
|
|
return self.model |
|
|
|
def calculate_weight(self, patches, weight, key): |
|
for p in patches: |
|
alpha = p[0] |
|
v = p[1] |
|
strength_model = p[2] |
|
|
|
if strength_model != 1.0: |
|
weight *= strength_model |
|
|
|
if isinstance(v, list): |
|
v = (self.calculate_weight(v[1:], v[0].clone(), key), ) |
|
|
|
if len(v) == 1: |
|
w1 = v[0] |
|
if alpha != 0.0: |
|
if w1.shape != weight.shape: |
|
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape)) |
|
else: |
|
weight += alpha * w1.type(weight.dtype).to(weight.device) |
|
elif len(v) == 4: #lora/locon |
|
mat1 = v[0].float().to(weight.device) |
|
mat2 = v[1].float().to(weight.device) |
|
if v[2] is not None: |
|
alpha *= v[2] / mat2.shape[0] |
|
if v[3] is not None: |
|
#locon mid weights, hopefully the math is fine because I didn't properly test it |
|
mat3 = v[3].float().to(weight.device) |
|
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]] |
|
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1) |
|
try: |
|
weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(weight.shape).type(weight.dtype) |
|
except Exception as e: |
|
print("ERROR", key, e) |
|
elif len(v) == 8: #lokr |
|
w1 = v[0] |
|
w2 = v[1] |
|
w1_a = v[3] |
|
w1_b = v[4] |
|
w2_a = v[5] |
|
w2_b = v[6] |
|
t2 = v[7] |
|
dim = None |
|
|
|
if w1 is None: |
|
dim = w1_b.shape[0] |
|
w1 = torch.mm(w1_a.float(), w1_b.float()) |
|
else: |
|
w1 = w1.float().to(weight.device) |
|
|
|
if w2 is None: |
|
dim = w2_b.shape[0] |
|
if t2 is None: |
|
w2 = torch.mm(w2_a.float().to(weight.device), w2_b.float().to(weight.device)) |
|
else: |
|
w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float().to(weight.device), w2_b.float().to(weight.device), w2_a.float().to(weight.device)) |
|
else: |
|
w2 = w2.float().to(weight.device) |
|
|
|
if len(w2.shape) == 4: |
|
w1 = w1.unsqueeze(2).unsqueeze(2) |
|
if v[2] is not None and dim is not None: |
|
alpha *= v[2] / dim |
|
|
|
try: |
|
weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype) |
|
except Exception as e: |
|
print("ERROR", key, e) |
|
else: #loha |
|
w1a = v[0] |
|
w1b = v[1] |
|
if v[2] is not None: |
|
alpha *= v[2] / w1b.shape[0] |
|
w2a = v[3] |
|
w2b = v[4] |
|
if v[5] is not None: #cp decomposition |
|
t1 = v[5] |
|
t2 = v[6] |
|
m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float().to(weight.device), w1b.float().to(weight.device), w1a.float().to(weight.device)) |
|
m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float().to(weight.device), w2b.float().to(weight.device), w2a.float().to(weight.device)) |
|
else: |
|
m1 = torch.mm(w1a.float().to(weight.device), w1b.float().to(weight.device)) |
|
m2 = torch.mm(w2a.float().to(weight.device), w2b.float().to(weight.device)) |
|
|
|
try: |
|
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype) |
|
except Exception as e: |
|
print("ERROR", key, e) |
|
|
|
return weight |
|
|
|
def unpatch_model(self, device_to=None): |
|
keys = list(self.backup.keys()) |
|
|
|
for k in keys: |
|
set_attr(self.model, k, self.backup[k]) |
|
|
|
self.backup = {} |
|
|
|
if device_to is not None: |
|
self.model.to(device_to) |
|
self.current_device = device_to |
|
|
|
|
|
def load_lora_for_models(model, clip, lora, strength_model, strength_clip): |
|
key_map = model_lora_keys_unet(model.model) |
|
key_map = model_lora_keys_clip(clip.cond_stage_model, key_map) |
|
loaded = load_lora(lora, key_map) |
|
new_modelpatcher = model.clone() |
|
k = new_modelpatcher.add_patches(loaded, strength_model) |
|
new_clip = clip.clone() |
|
k1 = new_clip.add_patches(loaded, strength_clip) |
|
k = set(k) |
|
k1 = set(k1) |
|
for x in loaded: |
|
if (x not in k) and (x not in k1): |
|
print("NOT LOADED", x) |
|
|
|
return (new_modelpatcher, new_clip) |
|
|
|
|
|
class CLIP: |
|
def __init__(self, target=None, embedding_directory=None, no_init=False): |
|
if no_init: |
|
return |
|
params = target.params.copy() |
|
clip = target.clip |
|
tokenizer = target.tokenizer |
|
|
|
load_device = model_management.text_encoder_device() |
|
offload_device = model_management.text_encoder_offload_device() |
|
params['device'] = load_device |
|
self.cond_stage_model = clip(**(params)) |
|
#TODO: make sure this doesn't have a quality loss before enabling. |
|
# if model_management.should_use_fp16(load_device): |
|
# self.cond_stage_model.half() |
|
|
|
self.cond_stage_model = self.cond_stage_model.to() |
|
|
|
self.tokenizer = tokenizer(embedding_directory=embedding_directory) |
|
self.patcher = ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device) |
|
self.layer_idx = None |
|
|
|
def clone(self): |
|
n = CLIP(no_init=True) |
|
n.patcher = self.patcher.clone() |
|
n.cond_stage_model = self.cond_stage_model |
|
n.tokenizer = self.tokenizer |
|
n.layer_idx = self.layer_idx |
|
return n |
|
|
|
def load_from_state_dict(self, sd): |
|
self.cond_stage_model.load_sd(sd) |
|
|
|
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0): |
|
return self.patcher.add_patches(patches, strength_patch, strength_model) |
|
|
|
def clip_layer(self, layer_idx): |
|
self.layer_idx = layer_idx |
|
|
|
def tokenize(self, text, return_word_ids=False): |
|
return self.tokenizer.tokenize_with_weights(text, return_word_ids) |
|
|
|
def encode_from_tokens(self, tokens, return_pooled=False): |
|
if self.layer_idx is not None: |
|
self.cond_stage_model.clip_layer(self.layer_idx) |
|
else: |
|
self.cond_stage_model.reset_clip_layer() |
|
|
|
self.load_model() |
|
cond, pooled = self.cond_stage_model.encode_token_weights(tokens) |
|
if return_pooled: |
|
return cond, pooled |
|
return cond |
|
|
|
def encode(self, text): |
|
tokens = self.tokenize(text) |
|
return self.encode_from_tokens(tokens) |
|
|
|
def load_sd(self, sd): |
|
return self.cond_stage_model.load_sd(sd) |
|
|
|
def get_sd(self): |
|
return self.cond_stage_model.state_dict() |
|
|
|
def load_model(self): |
|
model_management.load_model_gpu(self.patcher) |
|
return self.patcher |
|
|
|
def get_key_patches(self): |
|
return self.patcher.get_key_patches() |
|
|
|
class VAE: |
|
def __init__(self, ckpt_path=None, device=None, config=None): |
|
if config is None: |
|
#default SD1.x/SD2.x VAE parameters |
|
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0} |
|
self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss") |
|
else: |
|
self.first_stage_model = AutoencoderKL(**(config['params'])) |
|
self.first_stage_model = self.first_stage_model.eval() |
|
if ckpt_path is not None: |
|
sd = utils.load_torch_file(ckpt_path) |
|
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format |
|
sd = diffusers_convert.convert_vae_state_dict(sd) |
|
self.first_stage_model.load_state_dict(sd, strict=False) |
|
|
|
if device is None: |
|
device = model_management.vae_device() |
|
self.device = device |
|
self.offload_device = model_management.vae_offload_device() |
|
self.vae_dtype = model_management.vae_dtype() |
|
self.first_stage_model.to(self.vae_dtype) |
|
|
|
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16): |
|
steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap) |
|
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap) |
|
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap) |
|
pbar = utils.ProgressBar(steps) |
|
|
|
decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)) + 1.0).float() |
|
output = torch.clamp(( |
|
(utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) + |
|
utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) + |
|
utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar)) |
|
/ 3.0) / 2.0, min=0.0, max=1.0) |
|
return output |
|
|
|
def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64): |
|
steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap) |
|
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap) |
|
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap) |
|
pbar = utils.ProgressBar(steps) |
|
|
|
encode_fn = lambda a: self.first_stage_model.encode(2. * a.to(self.vae_dtype).to(self.device) - 1.).sample().float() |
|
samples = utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar) |
|
samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar) |
|
samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar) |
|
samples /= 3.0 |
|
return samples |
|
|
|
def decode(self, samples_in): |
|
self.first_stage_model = self.first_stage_model.to(self.device) |
|
try: |
|
memory_used = (2562 * samples_in.shape[2] * samples_in.shape[3] * 64) * 1.4 |
|
model_management.free_memory(memory_used, self.device) |
|
free_memory = model_management.get_free_memory(self.device) |
|
batch_number = int(free_memory / memory_used) |
|
batch_number = max(1, batch_number) |
|
|
|
pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu") |
|
for x in range(0, samples_in.shape[0], batch_number): |
|
samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device) |
|
pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples) + 1.0) / 2.0, min=0.0, max=1.0).cpu().float() |
|
except model_management.OOM_EXCEPTION as e: |
|
print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.") |
|
pixel_samples = self.decode_tiled_(samples_in) |
|
|
|
self.first_stage_model = self.first_stage_model.to(self.offload_device) |
|
pixel_samples = pixel_samples.cpu().movedim(1,-1) |
|
return pixel_samples |
|
|
|
def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16): |
|
self.first_stage_model = self.first_stage_model.to(self.device) |
|
output = self.decode_tiled_(samples, tile_x, tile_y, overlap) |
|
self.first_stage_model = self.first_stage_model.to(self.offload_device) |
|
return output.movedim(1,-1) |
|
|
|
def encode(self, pixel_samples): |
|
self.first_stage_model = self.first_stage_model.to(self.device) |
|
pixel_samples = pixel_samples.movedim(-1,1) |
|
try: |
|
memory_used = (2078 * pixel_samples.shape[2] * pixel_samples.shape[3]) * 1.4 #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change. |
|
model_management.free_memory(memory_used, self.device) |
|
free_memory = model_management.get_free_memory(self.device) |
|
batch_number = int(free_memory / memory_used) |
|
batch_number = max(1, batch_number) |
|
samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu") |
|
for x in range(0, pixel_samples.shape[0], batch_number): |
|
pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.vae_dtype).to(self.device) |
|
samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).sample().cpu().float() |
|
|
|
except model_management.OOM_EXCEPTION as e: |
|
print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.") |
|
samples = self.encode_tiled_(pixel_samples) |
|
|
|
self.first_stage_model = self.first_stage_model.to(self.offload_device) |
|
return samples |
|
|
|
def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64): |
|
self.first_stage_model = self.first_stage_model.to(self.device) |
|
pixel_samples = pixel_samples.movedim(-1,1) |
|
samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap) |
|
self.first_stage_model = self.first_stage_model.to(self.offload_device) |
|
return samples |
|
|
|
def get_sd(self): |
|
return self.first_stage_model.state_dict() |
|
|
|
|
|
def broadcast_image_to(tensor, target_batch_size, batched_number): |
|
current_batch_size = tensor.shape[0] |
|
#print(current_batch_size, target_batch_size) |
|
if current_batch_size == 1: |
|
return tensor |
|
|
|
per_batch = target_batch_size // batched_number |
|
tensor = tensor[:per_batch] |
|
|
|
if per_batch > tensor.shape[0]: |
|
tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0) |
|
|
|
current_batch_size = tensor.shape[0] |
|
if current_batch_size == target_batch_size: |
|
return tensor |
|
else: |
|
return torch.cat([tensor] * batched_number, dim=0) |
|
|
|
class ControlBase: |
|
def __init__(self, device=None): |
|
self.cond_hint_original = None |
|
self.cond_hint = None |
|
self.strength = 1.0 |
|
self.timestep_percent_range = (1.0, 0.0) |
|
self.timestep_range = None |
|
|
|
if device is None: |
|
device = model_management.get_torch_device() |
|
self.device = device |
|
self.previous_controlnet = None |
|
|
|
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(1.0, 0.0)): |
|
self.cond_hint_original = cond_hint |
|
self.strength = strength |
|
self.timestep_percent_range = timestep_percent_range |
|
return self |
|
|
|
def pre_run(self, model, percent_to_timestep_function): |
|
self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1])) |
|
if self.previous_controlnet is not None: |
|
self.previous_controlnet.pre_run(model, percent_to_timestep_function) |
|
|
|
def set_previous_controlnet(self, controlnet): |
|
self.previous_controlnet = controlnet |
|
return self |
|
|
|
def cleanup(self): |
|
if self.previous_controlnet is not None: |
|
self.previous_controlnet.cleanup() |
|
if self.cond_hint is not None: |
|
del self.cond_hint |
|
self.cond_hint = None |
|
self.timestep_range = None |
|
|
|
def get_models(self): |
|
out = [] |
|
if self.previous_controlnet is not None: |
|
out += self.previous_controlnet.get_models() |
|
return out |
|
|
|
def copy_to(self, c): |
|
c.cond_hint_original = self.cond_hint_original |
|
c.strength = self.strength |
|
c.timestep_percent_range = self.timestep_percent_range |
|
|
|
class ControlNet(ControlBase): |
|
def __init__(self, control_model, global_average_pooling=False, device=None): |
|
super().__init__(device) |
|
self.control_model = control_model |
|
self.control_model_wrapped = ModelPatcher(self.control_model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device()) |
|
self.global_average_pooling = global_average_pooling |
|
|
|
def get_control(self, x_noisy, t, cond, batched_number): |
|
control_prev = None |
|
if self.previous_controlnet is not None: |
|
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number) |
|
|
|
if self.timestep_range is not None: |
|
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]: |
|
if control_prev is not None: |
|
return control_prev |
|
else: |
|
return {} |
|
|
|
output_dtype = x_noisy.dtype |
|
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]: |
|
if self.cond_hint is not None: |
|
del self.cond_hint |
|
self.cond_hint = None |
|
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device) |
|
if x_noisy.shape[0] != self.cond_hint.shape[0]: |
|
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number) |
|
|
|
if self.control_model.dtype == torch.float16: |
|
precision_scope = torch.autocast |
|
else: |
|
precision_scope = contextlib.nullcontext |
|
|
|
with precision_scope(model_management.get_autocast_device(self.device)): |
|
context = torch.cat(cond['c_crossattn'], 1) |
|
y = cond.get('c_adm', None) |
|
control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=context, y=y) |
|
out = {'middle':[], 'output': []} |
|
autocast_enabled = torch.is_autocast_enabled() |
|
|
|
for i in range(len(control)): |
|
if i == (len(control) - 1): |
|
key = 'middle' |
|
index = 0 |
|
else: |
|
key = 'output' |
|
index = i |
|
x = control[i] |
|
if self.global_average_pooling: |
|
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3]) |
|
|
|
x *= self.strength |
|
if x.dtype != output_dtype and not autocast_enabled: |
|
x = x.to(output_dtype) |
|
|
|
if control_prev is not None and key in control_prev: |
|
prev = control_prev[key][index] |
|
if prev is not None: |
|
x += prev |
|
out[key].append(x) |
|
if control_prev is not None and 'input' in control_prev: |
|
out['input'] = control_prev['input'] |
|
return out |
|
|
|
def copy(self): |
|
c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling) |
|
self.copy_to(c) |
|
return c |
|
|
|
def get_models(self): |
|
out = super().get_models() |
|
out.append(self.control_model_wrapped) |
|
return out |
|
|
|
class ControlLoraOps: |
|
class Linear(torch.nn.Module): |
|
def __init__(self, in_features: int, out_features: int, bias: bool = True, |
|
device=None, dtype=None) -> None: |
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
super().__init__() |
|
self.in_features = in_features |
|
self.out_features = out_features |
|
self.weight = None |
|
self.up = None |
|
self.down = None |
|
self.bias = None |
|
|
|
def forward(self, input): |
|
if self.up is not None: |
|
return torch.nn.functional.linear(input, self.weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(self.weight.dtype), self.bias) |
|
else: |
|
return torch.nn.functional.linear(input, self.weight, self.bias) |
|
|
|
class Conv2d(torch.nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
groups=1, |
|
bias=True, |
|
padding_mode='zeros', |
|
device=None, |
|
dtype=None |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.kernel_size = kernel_size |
|
self.stride = stride |
|
self.padding = padding |
|
self.dilation = dilation |
|
self.transposed = False |
|
self.output_padding = 0 |
|
self.groups = groups |
|
self.padding_mode = padding_mode |
|
|
|
self.weight = None |
|
self.bias = None |
|
self.up = None |
|
self.down = None |
|
|
|
|
|
def forward(self, input): |
|
if self.up is not None: |
|
return torch.nn.functional.conv2d(input, self.weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(self.weight.dtype), self.bias, self.stride, self.padding, self.dilation, self.groups) |
|
else: |
|
return torch.nn.functional.conv2d(input, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) |
|
|
|
def conv_nd(self, dims, *args, **kwargs): |
|
if dims == 2: |
|
return self.Conv2d(*args, **kwargs) |
|
else: |
|
raise ValueError(f"unsupported dimensions: {dims}") |
|
|
|
|
|
class ControlLora(ControlNet): |
|
def __init__(self, control_weights, global_average_pooling=False, device=None): |
|
ControlBase.__init__(self, device) |
|
self.control_weights = control_weights |
|
self.global_average_pooling = global_average_pooling |
|
|
|
def pre_run(self, model, percent_to_timestep_function): |
|
super().pre_run(model, percent_to_timestep_function) |
|
controlnet_config = model.model_config.unet_config.copy() |
|
controlnet_config.pop("out_channels") |
|
controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1] |
|
controlnet_config["operations"] = ControlLoraOps() |
|
self.control_model = cldm.ControlNet(**controlnet_config) |
|
if model_management.should_use_fp16(): |
|
self.control_model.half() |
|
self.control_model.to(model_management.get_torch_device()) |
|
diffusion_model = model.diffusion_model |
|
sd = diffusion_model.state_dict() |
|
cm = self.control_model.state_dict() |
|
|
|
for k in sd: |
|
try: |
|
set_attr(self.control_model, k, sd[k]) |
|
except: |
|
pass |
|
|
|
for k in self.control_weights: |
|
if k not in {"lora_controlnet"}: |
|
set_attr(self.control_model, k, self.control_weights[k].to(model_management.get_torch_device())) |
|
|
|
def copy(self): |
|
c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling) |
|
self.copy_to(c) |
|
return c |
|
|
|
def cleanup(self): |
|
del self.control_model |
|
self.control_model = None |
|
super().cleanup() |
|
|
|
def get_models(self): |
|
out = ControlBase.get_models(self) |
|
return out |
|
|
|
def load_controlnet(ckpt_path, model=None): |
|
controlnet_data = utils.load_torch_file(ckpt_path, safe_load=True) |
|
if "lora_controlnet" in controlnet_data: |
|
return ControlLora(controlnet_data) |
|
|
|
controlnet_config = None |
|
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format |
|
use_fp16 = model_management.should_use_fp16() |
|
controlnet_config = model_detection.unet_config_from_diffusers_unet(controlnet_data, use_fp16) |
|
diffusers_keys = utils.unet_to_diffusers(controlnet_config) |
|
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight" |
|
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias" |
|
|
|
count = 0 |
|
loop = True |
|
while loop: |
|
suffix = [".weight", ".bias"] |
|
for s in suffix: |
|
k_in = "controlnet_down_blocks.{}{}".format(count, s) |
|
k_out = "zero_convs.{}.0{}".format(count, s) |
|
if k_in not in controlnet_data: |
|
loop = False |
|
break |
|
diffusers_keys[k_in] = k_out |
|
count += 1 |
|
|
|
count = 0 |
|
loop = True |
|
while loop: |
|
suffix = [".weight", ".bias"] |
|
for s in suffix: |
|
if count == 0: |
|
k_in = "controlnet_cond_embedding.conv_in{}".format(s) |
|
else: |
|
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s) |
|
k_out = "input_hint_block.{}{}".format(count * 2, s) |
|
if k_in not in controlnet_data: |
|
k_in = "controlnet_cond_embedding.conv_out{}".format(s) |
|
loop = False |
|
diffusers_keys[k_in] = k_out |
|
count += 1 |
|
|
|
new_sd = {} |
|
for k in diffusers_keys: |
|
if k in controlnet_data: |
|
new_sd[diffusers_keys[k]] = controlnet_data.pop(k) |
|
|
|
leftover_keys = controlnet_data.keys() |
|
if len(leftover_keys) > 0: |
|
print("leftover keys:", leftover_keys) |
|
controlnet_data = new_sd |
|
|
|
pth_key = 'control_model.zero_convs.0.0.weight' |
|
pth = False |
|
key = 'zero_convs.0.0.weight' |
|
if pth_key in controlnet_data: |
|
pth = True |
|
key = pth_key |
|
prefix = "control_model." |
|
elif key in controlnet_data: |
|
prefix = "" |
|
else: |
|
net = load_t2i_adapter(controlnet_data) |
|
if net is None: |
|
print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path) |
|
return net |
|
|
|
if controlnet_config is None: |
|
use_fp16 = model_management.should_use_fp16() |
|
controlnet_config = model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16).unet_config |
|
controlnet_config.pop("out_channels") |
|
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1] |
|
control_model = cldm.ControlNet(**controlnet_config) |
|
|
|
if pth: |
|
if 'difference' in controlnet_data: |
|
if model is not None: |
|
model_management.load_models_gpu([model]) |
|
model_sd = model.model_state_dict() |
|
for x in controlnet_data: |
|
c_m = "control_model." |
|
if x.startswith(c_m): |
|
sd_key = "diffusion_model.{}".format(x[len(c_m):]) |
|
if sd_key in model_sd: |
|
cd = controlnet_data[x] |
|
cd += model_sd[sd_key].type(cd.dtype).to(cd.device) |
|
else: |
|
print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.") |
|
|
|
class WeightsLoader(torch.nn.Module): |
|
pass |
|
w = WeightsLoader() |
|
w.control_model = control_model |
|
missing, unexpected = w.load_state_dict(controlnet_data, strict=False) |
|
else: |
|
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False) |
|
print(missing, unexpected) |
|
|
|
if use_fp16: |
|
control_model = control_model.half() |
|
|
|
global_average_pooling = False |
|
if ckpt_path.endswith("_shuffle.pth") or ckpt_path.endswith("_shuffle.safetensors") or ckpt_path.endswith("_shuffle_fp16.safetensors"): #TODO: smarter way of enabling global_average_pooling |
|
global_average_pooling = True |
|
|
|
control = ControlNet(control_model, global_average_pooling=global_average_pooling) |
|
return control |
|
|
|
class T2IAdapter(ControlBase): |
|
def __init__(self, t2i_model, channels_in, device=None): |
|
super().__init__(device) |
|
self.t2i_model = t2i_model |
|
self.channels_in = channels_in |
|
self.control_input = None |
|
|
|
def get_control(self, x_noisy, t, cond, batched_number): |
|
control_prev = None |
|
if self.previous_controlnet is not None: |
|
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number) |
|
|
|
if self.timestep_range is not None: |
|
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]: |
|
if control_prev is not None: |
|
return control_prev |
|
else: |
|
return {} |
|
|
|
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]: |
|
if self.cond_hint is not None: |
|
del self.cond_hint |
|
self.control_input = None |
|
self.cond_hint = None |
|
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").float().to(self.device) |
|
if self.channels_in == 1 and self.cond_hint.shape[1] > 1: |
|
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True) |
|
if x_noisy.shape[0] != self.cond_hint.shape[0]: |
|
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number) |
|
if self.control_input is None: |
|
self.t2i_model.to(self.device) |
|
self.control_input = self.t2i_model(self.cond_hint) |
|
self.t2i_model.cpu() |
|
|
|
output_dtype = x_noisy.dtype |
|
out = {'input':[]} |
|
|
|
autocast_enabled = torch.is_autocast_enabled() |
|
for i in range(len(self.control_input)): |
|
key = 'input' |
|
x = self.control_input[i] * self.strength |
|
if x.dtype != output_dtype and not autocast_enabled: |
|
x = x.to(output_dtype) |
|
|
|
if control_prev is not None and key in control_prev: |
|
index = len(control_prev[key]) - i * 3 - 3 |
|
prev = control_prev[key][index] |
|
if prev is not None: |
|
x += prev |
|
out[key].insert(0, None) |
|
out[key].insert(0, None) |
|
out[key].insert(0, x) |
|
|
|
if control_prev is not None and 'input' in control_prev: |
|
for i in range(len(out['input'])): |
|
if out['input'][i] is None: |
|
out['input'][i] = control_prev['input'][i] |
|
if control_prev is not None and 'middle' in control_prev: |
|
out['middle'] = control_prev['middle'] |
|
if control_prev is not None and 'output' in control_prev: |
|
out['output'] = control_prev['output'] |
|
return out |
|
|
|
def copy(self): |
|
c = T2IAdapter(self.t2i_model, self.channels_in) |
|
self.copy_to(c) |
|
return c |
|
|
|
def load_t2i_adapter(t2i_data): |
|
keys = t2i_data.keys() |
|
if 'adapter' in keys: |
|
t2i_data = t2i_data['adapter'] |
|
keys = t2i_data.keys() |
|
if "body.0.in_conv.weight" in keys: |
|
cin = t2i_data['body.0.in_conv.weight'].shape[1] |
|
model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4) |
|
elif 'conv_in.weight' in keys: |
|
cin = t2i_data['conv_in.weight'].shape[1] |
|
channel = t2i_data['conv_in.weight'].shape[0] |
|
ksize = t2i_data['body.0.block2.weight'].shape[2] |
|
use_conv = False |
|
down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys)) |
|
if len(down_opts) > 0: |
|
use_conv = True |
|
model_ad = adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv) |
|
else: |
|
return None |
|
model_ad.load_state_dict(t2i_data) |
|
return T2IAdapter(model_ad, cin // 64) |
|
|
|
|
|
class StyleModel: |
|
def __init__(self, model, device="cpu"): |
|
self.model = model |
|
|
|
def get_cond(self, input): |
|
return self.model(input.last_hidden_state) |
|
|
|
|
|
def load_style_model(ckpt_path): |
|
model_data = utils.load_torch_file(ckpt_path, safe_load=True) |
|
keys = model_data.keys() |
|
if "style_embedding" in keys: |
|
model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8) |
|
else: |
|
raise Exception("invalid style model {}".format(ckpt_path)) |
|
model.load_state_dict(model_data) |
|
return StyleModel(model) |
|
|
|
|
|
def load_clip(ckpt_paths, embedding_directory=None): |
|
clip_data = [] |
|
for p in ckpt_paths: |
|
clip_data.append(utils.load_torch_file(p, safe_load=True)) |
|
|
|
class EmptyClass: |
|
pass |
|
|
|
for i in range(len(clip_data)): |
|
if "transformer.resblocks.0.ln_1.weight" in clip_data[i]: |
|
clip_data[i] = utils.transformers_convert(clip_data[i], "", "text_model.", 32) |
|
|
|
clip_target = EmptyClass() |
|
clip_target.params = {} |
|
if len(clip_data) == 1: |
|
if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]: |
|
clip_target.clip = sdxl_clip.SDXLRefinerClipModel |
|
clip_target.tokenizer = sdxl_clip.SDXLTokenizer |
|
elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]: |
|
clip_target.clip = sd2_clip.SD2ClipModel |
|
clip_target.tokenizer = sd2_clip.SD2Tokenizer |
|
else: |
|
clip_target.clip = sd1_clip.SD1ClipModel |
|
clip_target.tokenizer = sd1_clip.SD1Tokenizer |
|
else: |
|
clip_target.clip = sdxl_clip.SDXLClipModel |
|
clip_target.tokenizer = sdxl_clip.SDXLTokenizer |
|
|
|
clip = CLIP(clip_target, embedding_directory=embedding_directory) |
|
for c in clip_data: |
|
m, u = clip.load_sd(c) |
|
if len(m) > 0: |
|
print("clip missing:", m) |
|
|
|
if len(u) > 0: |
|
print("clip unexpected:", u) |
|
return clip |
|
|
|
def load_gligen(ckpt_path): |
|
data = utils.load_torch_file(ckpt_path, safe_load=True) |
|
model = gligen.load_gligen(data) |
|
if model_management.should_use_fp16(): |
|
model = model.half() |
|
return ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device()) |
|
|
|
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None): |
|
#TODO: this function is a mess and should be removed eventually |
|
if config is None: |
|
with open(config_path, 'r') as stream: |
|
config = yaml.safe_load(stream) |
|
model_config_params = config['model']['params'] |
|
clip_config = model_config_params['cond_stage_config'] |
|
scale_factor = model_config_params['scale_factor'] |
|
vae_config = model_config_params['first_stage_config'] |
|
|
|
fp16 = False |
|
if "unet_config" in model_config_params: |
|
if "params" in model_config_params["unet_config"]: |
|
unet_config = model_config_params["unet_config"]["params"] |
|
if "use_fp16" in unet_config: |
|
fp16 = unet_config["use_fp16"] |
|
|
|
noise_aug_config = None |
|
if "noise_aug_config" in model_config_params: |
|
noise_aug_config = model_config_params["noise_aug_config"] |
|
|
|
model_type = model_base.ModelType.EPS |
|
|
|
if "parameterization" in model_config_params: |
|
if model_config_params["parameterization"] == "v": |
|
model_type = model_base.ModelType.V_PREDICTION |
|
|
|
clip = None |
|
vae = None |
|
|
|
class WeightsLoader(torch.nn.Module): |
|
pass |
|
|
|
if state_dict is None: |
|
state_dict = utils.load_torch_file(ckpt_path) |
|
|
|
class EmptyClass: |
|
pass |
|
|
|
model_config = EmptyClass() |
|
model_config.unet_config = unet_config |
|
from . import latent_formats |
|
model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor) |
|
|
|
if config['model']["target"].endswith("LatentInpaintDiffusion"): |
|
model = model_base.SDInpaint(model_config, model_type=model_type) |
|
elif config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"): |
|
model = model_base.SD21UNCLIP(model_config, noise_aug_config["params"], model_type=model_type) |
|
else: |
|
model = model_base.BaseModel(model_config, model_type=model_type) |
|
|
|
if fp16: |
|
model = model.half() |
|
|
|
offload_device = model_management.unet_offload_device() |
|
model = model.to(offload_device) |
|
model.load_model_weights(state_dict, "model.diffusion_model.") |
|
|
|
if output_vae: |
|
w = WeightsLoader() |
|
vae = VAE(config=vae_config) |
|
w.first_stage_model = vae.first_stage_model |
|
load_model_weights(w, state_dict) |
|
|
|
if output_clip: |
|
w = WeightsLoader() |
|
clip_target = EmptyClass() |
|
clip_target.params = clip_config.get("params", {}) |
|
if clip_config["target"].endswith("FrozenOpenCLIPEmbedder"): |
|
clip_target.clip = sd2_clip.SD2ClipModel |
|
clip_target.tokenizer = sd2_clip.SD2Tokenizer |
|
elif clip_config["target"].endswith("FrozenCLIPEmbedder"): |
|
clip_target.clip = sd1_clip.SD1ClipModel |
|
clip_target.tokenizer = sd1_clip.SD1Tokenizer |
|
clip = CLIP(clip_target, embedding_directory=embedding_directory) |
|
w.cond_stage_model = clip.cond_stage_model |
|
load_clip_weights(w, state_dict) |
|
|
|
return (ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae) |
|
|
|
def calculate_parameters(sd, prefix): |
|
params = 0 |
|
for k in sd.keys(): |
|
if k.startswith(prefix): |
|
params += sd[k].nelement() |
|
return params |
|
|
|
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None): |
|
sd = utils.load_torch_file(ckpt_path) |
|
sd_keys = sd.keys() |
|
clip = None |
|
clipvision = None |
|
vae = None |
|
model = None |
|
clip_target = None |
|
|
|
parameters = calculate_parameters(sd, "model.diffusion_model.") |
|
fp16 = model_management.should_use_fp16(model_params=parameters) |
|
|
|
class WeightsLoader(torch.nn.Module): |
|
pass |
|
|
|
model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", fp16) |
|
if model_config is None: |
|
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path)) |
|
|
|
if model_config.clip_vision_prefix is not None: |
|
if output_clipvision: |
|
clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True) |
|
|
|
dtype = torch.float32 |
|
if fp16: |
|
dtype = torch.float16 |
|
|
|
inital_load_device = model_management.unet_inital_load_device(parameters, dtype) |
|
offload_device = model_management.unet_offload_device() |
|
model = model_config.get_model(sd, "model.diffusion_model.", device=inital_load_device) |
|
model.load_model_weights(sd, "model.diffusion_model.") |
|
|
|
if output_vae: |
|
vae = VAE() |
|
w = WeightsLoader() |
|
w.first_stage_model = vae.first_stage_model |
|
load_model_weights(w, sd) |
|
|
|
if output_clip: |
|
w = WeightsLoader() |
|
clip_target = model_config.clip_target() |
|
clip = CLIP(clip_target, embedding_directory=embedding_directory) |
|
w.cond_stage_model = clip.cond_stage_model |
|
sd = model_config.process_clip_state_dict(sd) |
|
load_model_weights(w, sd) |
|
|
|
left_over = sd.keys() |
|
if len(left_over) > 0: |
|
print("left over keys:", left_over) |
|
|
|
model_patcher = ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device(), current_device=inital_load_device) |
|
if inital_load_device != torch.device("cpu"): |
|
print("loaded straight to GPU") |
|
model_management.load_model_gpu(model_patcher) |
|
|
|
return (model_patcher, clip, vae, clipvision) |
|
|
|
|
|
def load_unet(unet_path): #load unet in diffusers format |
|
sd = utils.load_torch_file(unet_path) |
|
parameters = calculate_parameters(sd, "") |
|
fp16 = model_management.should_use_fp16(model_params=parameters) |
|
|
|
model_config = model_detection.model_config_from_diffusers_unet(sd, fp16) |
|
if model_config is None: |
|
print("ERROR UNSUPPORTED UNET", unet_path) |
|
return None |
|
|
|
diffusers_keys = utils.unet_to_diffusers(model_config.unet_config) |
|
|
|
new_sd = {} |
|
for k in diffusers_keys: |
|
if k in sd: |
|
new_sd[diffusers_keys[k]] = sd.pop(k) |
|
else: |
|
print(diffusers_keys[k], k) |
|
offload_device = model_management.unet_offload_device() |
|
model = model_config.get_model(new_sd, "") |
|
model = model.to(offload_device) |
|
model.load_model_weights(new_sd, "") |
|
return ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device) |
|
|
|
def save_checkpoint(output_path, model, clip, vae, metadata=None): |
|
model_management.load_models_gpu([model, clip.load_model()]) |
|
sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd()) |
|
utils.save_torch_file(sd, output_path, metadata=metadata)
|
|
|