You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
830 lines
30 KiB
830 lines
30 KiB
import sys |
|
import copy |
|
import logging |
|
import threading |
|
import heapq |
|
import traceback |
|
import inspect |
|
from typing import List, Literal, NamedTuple, Optional |
|
|
|
import torch |
|
import nodes |
|
|
|
import comfy.model_management |
|
|
|
def get_input_data(inputs, class_def, unique_id, outputs={}, prompt={}, extra_data={}): |
|
valid_inputs = class_def.INPUT_TYPES() |
|
input_data_all = {} |
|
for x in inputs: |
|
input_data = inputs[x] |
|
if isinstance(input_data, list): |
|
input_unique_id = input_data[0] |
|
output_index = input_data[1] |
|
if input_unique_id not in outputs: |
|
input_data_all[x] = (None,) |
|
continue |
|
obj = outputs[input_unique_id][output_index] |
|
input_data_all[x] = obj |
|
else: |
|
if ("required" in valid_inputs and x in valid_inputs["required"]) or ("optional" in valid_inputs and x in valid_inputs["optional"]): |
|
input_data_all[x] = [input_data] |
|
|
|
if "hidden" in valid_inputs: |
|
h = valid_inputs["hidden"] |
|
for x in h: |
|
if h[x] == "PROMPT": |
|
input_data_all[x] = [prompt] |
|
if h[x] == "EXTRA_PNGINFO": |
|
if "extra_pnginfo" in extra_data: |
|
input_data_all[x] = [extra_data['extra_pnginfo']] |
|
if h[x] == "UNIQUE_ID": |
|
input_data_all[x] = [unique_id] |
|
return input_data_all |
|
|
|
def map_node_over_list(obj, input_data_all, func, allow_interrupt=False): |
|
# check if node wants the lists |
|
input_is_list = False |
|
if hasattr(obj, "INPUT_IS_LIST"): |
|
input_is_list = obj.INPUT_IS_LIST |
|
|
|
if len(input_data_all) == 0: |
|
max_len_input = 0 |
|
else: |
|
max_len_input = max([len(x) for x in input_data_all.values()]) |
|
|
|
# get a slice of inputs, repeat last input when list isn't long enough |
|
def slice_dict(d, i): |
|
d_new = dict() |
|
for k,v in d.items(): |
|
d_new[k] = v[i if len(v) > i else -1] |
|
return d_new |
|
|
|
results = [] |
|
if input_is_list: |
|
if allow_interrupt: |
|
nodes.before_node_execution() |
|
results.append(getattr(obj, func)(**input_data_all)) |
|
elif max_len_input == 0: |
|
if allow_interrupt: |
|
nodes.before_node_execution() |
|
results.append(getattr(obj, func)()) |
|
else: |
|
for i in range(max_len_input): |
|
if allow_interrupt: |
|
nodes.before_node_execution() |
|
results.append(getattr(obj, func)(**slice_dict(input_data_all, i))) |
|
return results |
|
|
|
def get_output_data(obj, input_data_all): |
|
|
|
results = [] |
|
uis = [] |
|
return_values = map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True) |
|
|
|
for r in return_values: |
|
if isinstance(r, dict): |
|
if 'ui' in r: |
|
uis.append(r['ui']) |
|
if 'result' in r: |
|
results.append(r['result']) |
|
else: |
|
results.append(r) |
|
|
|
output = [] |
|
if len(results) > 0: |
|
# check which outputs need concatenating |
|
output_is_list = [False] * len(results[0]) |
|
if hasattr(obj, "OUTPUT_IS_LIST"): |
|
output_is_list = obj.OUTPUT_IS_LIST |
|
|
|
# merge node execution results |
|
for i, is_list in zip(range(len(results[0])), output_is_list): |
|
if is_list: |
|
output.append([x for o in results for x in o[i]]) |
|
else: |
|
output.append([o[i] for o in results]) |
|
|
|
ui = dict() |
|
if len(uis) > 0: |
|
ui = {k: [y for x in uis for y in x[k]] for k in uis[0].keys()} |
|
return output, ui |
|
|
|
def format_value(x): |
|
if x is None: |
|
return None |
|
elif isinstance(x, (int, float, bool, str)): |
|
return x |
|
else: |
|
return str(x) |
|
|
|
def recursive_execute(server, prompt, outputs, current_item, extra_data, executed, prompt_id, outputs_ui, object_storage): |
|
unique_id = current_item |
|
inputs = prompt[unique_id]['inputs'] |
|
class_type = prompt[unique_id]['class_type'] |
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type] |
|
if unique_id in outputs: |
|
return (True, None, None) |
|
|
|
for x in inputs: |
|
input_data = inputs[x] |
|
|
|
if isinstance(input_data, list): |
|
input_unique_id = input_data[0] |
|
output_index = input_data[1] |
|
if input_unique_id not in outputs: |
|
result = recursive_execute(server, prompt, outputs, input_unique_id, extra_data, executed, prompt_id, outputs_ui, object_storage) |
|
if result[0] is not True: |
|
# Another node failed further upstream |
|
return result |
|
|
|
input_data_all = None |
|
try: |
|
input_data_all = get_input_data(inputs, class_def, unique_id, outputs, prompt, extra_data) |
|
if server.client_id is not None: |
|
server.last_node_id = unique_id |
|
server.send_sync("executing", { "node": unique_id, "prompt_id": prompt_id }, server.client_id) |
|
|
|
obj = object_storage.get((unique_id, class_type), None) |
|
if obj is None: |
|
obj = class_def() |
|
object_storage[(unique_id, class_type)] = obj |
|
|
|
output_data, output_ui = get_output_data(obj, input_data_all) |
|
outputs[unique_id] = output_data |
|
if len(output_ui) > 0: |
|
outputs_ui[unique_id] = output_ui |
|
if server.client_id is not None: |
|
server.send_sync("executed", { "node": unique_id, "output": output_ui, "prompt_id": prompt_id }, server.client_id) |
|
except comfy.model_management.InterruptProcessingException as iex: |
|
logging.info("Processing interrupted") |
|
|
|
# skip formatting inputs/outputs |
|
error_details = { |
|
"node_id": unique_id, |
|
} |
|
|
|
return (False, error_details, iex) |
|
except Exception as ex: |
|
typ, _, tb = sys.exc_info() |
|
exception_type = full_type_name(typ) |
|
input_data_formatted = {} |
|
if input_data_all is not None: |
|
input_data_formatted = {} |
|
for name, inputs in input_data_all.items(): |
|
input_data_formatted[name] = [format_value(x) for x in inputs] |
|
|
|
output_data_formatted = {} |
|
for node_id, node_outputs in outputs.items(): |
|
output_data_formatted[node_id] = [[format_value(x) for x in l] for l in node_outputs] |
|
|
|
logging.error("!!! Exception during processing !!!") |
|
logging.error(traceback.format_exc()) |
|
|
|
error_details = { |
|
"node_id": unique_id, |
|
"exception_message": str(ex), |
|
"exception_type": exception_type, |
|
"traceback": traceback.format_tb(tb), |
|
"current_inputs": input_data_formatted, |
|
"current_outputs": output_data_formatted |
|
} |
|
return (False, error_details, ex) |
|
|
|
executed.add(unique_id) |
|
|
|
return (True, None, None) |
|
|
|
def recursive_will_execute(prompt, outputs, current_item): |
|
unique_id = current_item |
|
inputs = prompt[unique_id]['inputs'] |
|
will_execute = [] |
|
if unique_id in outputs: |
|
return [] |
|
|
|
for x in inputs: |
|
input_data = inputs[x] |
|
if isinstance(input_data, list): |
|
input_unique_id = input_data[0] |
|
output_index = input_data[1] |
|
if input_unique_id not in outputs: |
|
will_execute += recursive_will_execute(prompt, outputs, input_unique_id) |
|
|
|
return will_execute + [unique_id] |
|
|
|
def recursive_output_delete_if_changed(prompt, old_prompt, outputs, current_item): |
|
unique_id = current_item |
|
inputs = prompt[unique_id]['inputs'] |
|
class_type = prompt[unique_id]['class_type'] |
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type] |
|
|
|
is_changed_old = '' |
|
is_changed = '' |
|
to_delete = False |
|
if hasattr(class_def, 'IS_CHANGED'): |
|
if unique_id in old_prompt and 'is_changed' in old_prompt[unique_id]: |
|
is_changed_old = old_prompt[unique_id]['is_changed'] |
|
if 'is_changed' not in prompt[unique_id]: |
|
input_data_all = get_input_data(inputs, class_def, unique_id, outputs) |
|
if input_data_all is not None: |
|
try: |
|
#is_changed = class_def.IS_CHANGED(**input_data_all) |
|
is_changed = map_node_over_list(class_def, input_data_all, "IS_CHANGED") |
|
prompt[unique_id]['is_changed'] = is_changed |
|
except: |
|
to_delete = True |
|
else: |
|
is_changed = prompt[unique_id]['is_changed'] |
|
|
|
if unique_id not in outputs: |
|
return True |
|
|
|
if not to_delete: |
|
if is_changed != is_changed_old: |
|
to_delete = True |
|
elif unique_id not in old_prompt: |
|
to_delete = True |
|
elif inputs == old_prompt[unique_id]['inputs']: |
|
for x in inputs: |
|
input_data = inputs[x] |
|
|
|
if isinstance(input_data, list): |
|
input_unique_id = input_data[0] |
|
output_index = input_data[1] |
|
if input_unique_id in outputs: |
|
to_delete = recursive_output_delete_if_changed(prompt, old_prompt, outputs, input_unique_id) |
|
else: |
|
to_delete = True |
|
if to_delete: |
|
break |
|
else: |
|
to_delete = True |
|
|
|
if to_delete: |
|
d = outputs.pop(unique_id) |
|
del d |
|
return to_delete |
|
|
|
class PromptExecutor: |
|
def __init__(self, server): |
|
self.server = server |
|
self.reset() |
|
|
|
def reset(self): |
|
self.outputs = {} |
|
self.object_storage = {} |
|
self.outputs_ui = {} |
|
self.status_messages = [] |
|
self.success = True |
|
self.old_prompt = {} |
|
|
|
def add_message(self, event, data, broadcast: bool): |
|
self.status_messages.append((event, data)) |
|
if self.server.client_id is not None or broadcast: |
|
self.server.send_sync(event, data, self.server.client_id) |
|
|
|
def handle_execution_error(self, prompt_id, prompt, current_outputs, executed, error, ex): |
|
node_id = error["node_id"] |
|
class_type = prompt[node_id]["class_type"] |
|
|
|
# First, send back the status to the frontend depending |
|
# on the exception type |
|
if isinstance(ex, comfy.model_management.InterruptProcessingException): |
|
mes = { |
|
"prompt_id": prompt_id, |
|
"node_id": node_id, |
|
"node_type": class_type, |
|
"executed": list(executed), |
|
} |
|
self.add_message("execution_interrupted", mes, broadcast=True) |
|
else: |
|
mes = { |
|
"prompt_id": prompt_id, |
|
"node_id": node_id, |
|
"node_type": class_type, |
|
"executed": list(executed), |
|
|
|
"exception_message": error["exception_message"], |
|
"exception_type": error["exception_type"], |
|
"traceback": error["traceback"], |
|
"current_inputs": error["current_inputs"], |
|
"current_outputs": error["current_outputs"], |
|
} |
|
self.add_message("execution_error", mes, broadcast=False) |
|
|
|
# Next, remove the subsequent outputs since they will not be executed |
|
to_delete = [] |
|
for o in self.outputs: |
|
if (o not in current_outputs) and (o not in executed): |
|
to_delete += [o] |
|
if o in self.old_prompt: |
|
d = self.old_prompt.pop(o) |
|
del d |
|
for o in to_delete: |
|
d = self.outputs.pop(o) |
|
del d |
|
|
|
def execute(self, prompt, prompt_id, extra_data={}, execute_outputs=[]): |
|
nodes.interrupt_processing(False) |
|
|
|
if "client_id" in extra_data: |
|
self.server.client_id = extra_data["client_id"] |
|
else: |
|
self.server.client_id = None |
|
|
|
self.status_messages = [] |
|
self.add_message("execution_start", { "prompt_id": prompt_id}, broadcast=False) |
|
|
|
with torch.inference_mode(): |
|
#delete cached outputs if nodes don't exist for them |
|
to_delete = [] |
|
for o in self.outputs: |
|
if o not in prompt: |
|
to_delete += [o] |
|
for o in to_delete: |
|
d = self.outputs.pop(o) |
|
del d |
|
to_delete = [] |
|
for o in self.object_storage: |
|
if o[0] not in prompt: |
|
to_delete += [o] |
|
else: |
|
p = prompt[o[0]] |
|
if o[1] != p['class_type']: |
|
to_delete += [o] |
|
for o in to_delete: |
|
d = self.object_storage.pop(o) |
|
del d |
|
|
|
for x in prompt: |
|
recursive_output_delete_if_changed(prompt, self.old_prompt, self.outputs, x) |
|
|
|
current_outputs = set(self.outputs.keys()) |
|
for x in list(self.outputs_ui.keys()): |
|
if x not in current_outputs: |
|
d = self.outputs_ui.pop(x) |
|
del d |
|
|
|
comfy.model_management.cleanup_models() |
|
self.add_message("execution_cached", |
|
{ "nodes": list(current_outputs) , "prompt_id": prompt_id}, |
|
broadcast=False) |
|
executed = set() |
|
output_node_id = None |
|
to_execute = [] |
|
|
|
for node_id in list(execute_outputs): |
|
to_execute += [(0, node_id)] |
|
|
|
while len(to_execute) > 0: |
|
#always execute the output that depends on the least amount of unexecuted nodes first |
|
to_execute = sorted(list(map(lambda a: (len(recursive_will_execute(prompt, self.outputs, a[-1])), a[-1]), to_execute))) |
|
output_node_id = to_execute.pop(0)[-1] |
|
|
|
# This call shouldn't raise anything if there's an error deep in |
|
# the actual SD code, instead it will report the node where the |
|
# error was raised |
|
self.success, error, ex = recursive_execute(self.server, prompt, self.outputs, output_node_id, extra_data, executed, prompt_id, self.outputs_ui, self.object_storage) |
|
if self.success is not True: |
|
self.handle_execution_error(prompt_id, prompt, current_outputs, executed, error, ex) |
|
break |
|
|
|
for x in executed: |
|
self.old_prompt[x] = copy.deepcopy(prompt[x]) |
|
self.server.last_node_id = None |
|
if comfy.model_management.DISABLE_SMART_MEMORY: |
|
comfy.model_management.unload_all_models() |
|
|
|
|
|
|
|
def validate_inputs(prompt, item, validated): |
|
unique_id = item |
|
if unique_id in validated: |
|
return validated[unique_id] |
|
|
|
inputs = prompt[unique_id]['inputs'] |
|
class_type = prompt[unique_id]['class_type'] |
|
obj_class = nodes.NODE_CLASS_MAPPINGS[class_type] |
|
|
|
class_inputs = obj_class.INPUT_TYPES() |
|
required_inputs = class_inputs['required'] |
|
|
|
errors = [] |
|
valid = True |
|
|
|
validate_function_inputs = [] |
|
if hasattr(obj_class, "VALIDATE_INPUTS"): |
|
validate_function_inputs = inspect.getfullargspec(obj_class.VALIDATE_INPUTS).args |
|
|
|
for x in required_inputs: |
|
if x not in inputs: |
|
error = { |
|
"type": "required_input_missing", |
|
"message": "Required input is missing", |
|
"details": f"{x}", |
|
"extra_info": { |
|
"input_name": x |
|
} |
|
} |
|
errors.append(error) |
|
continue |
|
|
|
val = inputs[x] |
|
info = required_inputs[x] |
|
type_input = info[0] |
|
if isinstance(val, list): |
|
if len(val) != 2: |
|
error = { |
|
"type": "bad_linked_input", |
|
"message": "Bad linked input, must be a length-2 list of [node_id, slot_index]", |
|
"details": f"{x}", |
|
"extra_info": { |
|
"input_name": x, |
|
"input_config": info, |
|
"received_value": val |
|
} |
|
} |
|
errors.append(error) |
|
continue |
|
|
|
o_id = val[0] |
|
o_class_type = prompt[o_id]['class_type'] |
|
r = nodes.NODE_CLASS_MAPPINGS[o_class_type].RETURN_TYPES |
|
if r[val[1]] != type_input: |
|
received_type = r[val[1]] |
|
details = f"{x}, {received_type} != {type_input}" |
|
error = { |
|
"type": "return_type_mismatch", |
|
"message": "Return type mismatch between linked nodes", |
|
"details": details, |
|
"extra_info": { |
|
"input_name": x, |
|
"input_config": info, |
|
"received_type": received_type, |
|
"linked_node": val |
|
} |
|
} |
|
errors.append(error) |
|
continue |
|
try: |
|
r = validate_inputs(prompt, o_id, validated) |
|
if r[0] is False: |
|
# `r` will be set in `validated[o_id]` already |
|
valid = False |
|
continue |
|
except Exception as ex: |
|
typ, _, tb = sys.exc_info() |
|
valid = False |
|
exception_type = full_type_name(typ) |
|
reasons = [{ |
|
"type": "exception_during_inner_validation", |
|
"message": "Exception when validating inner node", |
|
"details": str(ex), |
|
"extra_info": { |
|
"input_name": x, |
|
"input_config": info, |
|
"exception_message": str(ex), |
|
"exception_type": exception_type, |
|
"traceback": traceback.format_tb(tb), |
|
"linked_node": val |
|
} |
|
}] |
|
validated[o_id] = (False, reasons, o_id) |
|
continue |
|
else: |
|
try: |
|
if type_input == "INT": |
|
val = int(val) |
|
inputs[x] = val |
|
if type_input == "FLOAT": |
|
val = float(val) |
|
inputs[x] = val |
|
if type_input == "STRING": |
|
val = str(val) |
|
inputs[x] = val |
|
except Exception as ex: |
|
error = { |
|
"type": "invalid_input_type", |
|
"message": f"Failed to convert an input value to a {type_input} value", |
|
"details": f"{x}, {val}, {ex}", |
|
"extra_info": { |
|
"input_name": x, |
|
"input_config": info, |
|
"received_value": val, |
|
"exception_message": str(ex) |
|
} |
|
} |
|
errors.append(error) |
|
continue |
|
|
|
if len(info) > 1: |
|
if "min" in info[1] and val < info[1]["min"]: |
|
error = { |
|
"type": "value_smaller_than_min", |
|
"message": "Value {} smaller than min of {}".format(val, info[1]["min"]), |
|
"details": f"{x}", |
|
"extra_info": { |
|
"input_name": x, |
|
"input_config": info, |
|
"received_value": val, |
|
} |
|
} |
|
errors.append(error) |
|
continue |
|
if "max" in info[1] and val > info[1]["max"]: |
|
error = { |
|
"type": "value_bigger_than_max", |
|
"message": "Value {} bigger than max of {}".format(val, info[1]["max"]), |
|
"details": f"{x}", |
|
"extra_info": { |
|
"input_name": x, |
|
"input_config": info, |
|
"received_value": val, |
|
} |
|
} |
|
errors.append(error) |
|
continue |
|
|
|
if x not in validate_function_inputs: |
|
if isinstance(type_input, list): |
|
if val not in type_input: |
|
input_config = info |
|
list_info = "" |
|
|
|
# Don't send back gigantic lists like if they're lots of |
|
# scanned model filepaths |
|
if len(type_input) > 20: |
|
list_info = f"(list of length {len(type_input)})" |
|
input_config = None |
|
else: |
|
list_info = str(type_input) |
|
|
|
error = { |
|
"type": "value_not_in_list", |
|
"message": "Value not in list", |
|
"details": f"{x}: '{val}' not in {list_info}", |
|
"extra_info": { |
|
"input_name": x, |
|
"input_config": input_config, |
|
"received_value": val, |
|
} |
|
} |
|
errors.append(error) |
|
continue |
|
|
|
if len(validate_function_inputs) > 0: |
|
input_data_all = get_input_data(inputs, obj_class, unique_id) |
|
input_filtered = {} |
|
for x in input_data_all: |
|
if x in validate_function_inputs: |
|
input_filtered[x] = input_data_all[x] |
|
|
|
#ret = obj_class.VALIDATE_INPUTS(**input_filtered) |
|
ret = map_node_over_list(obj_class, input_filtered, "VALIDATE_INPUTS") |
|
for x in input_filtered: |
|
for i, r in enumerate(ret): |
|
if r is not True: |
|
details = f"{x}" |
|
if r is not False: |
|
details += f" - {str(r)}" |
|
|
|
error = { |
|
"type": "custom_validation_failed", |
|
"message": "Custom validation failed for node", |
|
"details": details, |
|
"extra_info": { |
|
"input_name": x, |
|
"input_config": info, |
|
"received_value": val, |
|
} |
|
} |
|
errors.append(error) |
|
continue |
|
|
|
if len(errors) > 0 or valid is not True: |
|
ret = (False, errors, unique_id) |
|
else: |
|
ret = (True, [], unique_id) |
|
|
|
validated[unique_id] = ret |
|
return ret |
|
|
|
def full_type_name(klass): |
|
module = klass.__module__ |
|
if module == 'builtins': |
|
return klass.__qualname__ |
|
return module + '.' + klass.__qualname__ |
|
|
|
def validate_prompt(prompt): |
|
outputs = set() |
|
for x in prompt: |
|
class_ = nodes.NODE_CLASS_MAPPINGS[prompt[x]['class_type']] |
|
if hasattr(class_, 'OUTPUT_NODE') and class_.OUTPUT_NODE == True: |
|
outputs.add(x) |
|
|
|
if len(outputs) == 0: |
|
error = { |
|
"type": "prompt_no_outputs", |
|
"message": "Prompt has no outputs", |
|
"details": "", |
|
"extra_info": {} |
|
} |
|
return (False, error, [], []) |
|
|
|
good_outputs = set() |
|
errors = [] |
|
node_errors = {} |
|
validated = {} |
|
for o in outputs: |
|
valid = False |
|
reasons = [] |
|
try: |
|
m = validate_inputs(prompt, o, validated) |
|
valid = m[0] |
|
reasons = m[1] |
|
except Exception as ex: |
|
typ, _, tb = sys.exc_info() |
|
valid = False |
|
exception_type = full_type_name(typ) |
|
reasons = [{ |
|
"type": "exception_during_validation", |
|
"message": "Exception when validating node", |
|
"details": str(ex), |
|
"extra_info": { |
|
"exception_type": exception_type, |
|
"traceback": traceback.format_tb(tb) |
|
} |
|
}] |
|
validated[o] = (False, reasons, o) |
|
|
|
if valid is True: |
|
good_outputs.add(o) |
|
else: |
|
logging.error(f"Failed to validate prompt for output {o}:") |
|
if len(reasons) > 0: |
|
logging.error("* (prompt):") |
|
for reason in reasons: |
|
logging.error(f" - {reason['message']}: {reason['details']}") |
|
errors += [(o, reasons)] |
|
for node_id, result in validated.items(): |
|
valid = result[0] |
|
reasons = result[1] |
|
# If a node upstream has errors, the nodes downstream will also |
|
# be reported as invalid, but there will be no errors attached. |
|
# So don't return those nodes as having errors in the response. |
|
if valid is not True and len(reasons) > 0: |
|
if node_id not in node_errors: |
|
class_type = prompt[node_id]['class_type'] |
|
node_errors[node_id] = { |
|
"errors": reasons, |
|
"dependent_outputs": [], |
|
"class_type": class_type |
|
} |
|
logging.error(f"* {class_type} {node_id}:") |
|
for reason in reasons: |
|
logging.error(f" - {reason['message']}: {reason['details']}") |
|
node_errors[node_id]["dependent_outputs"].append(o) |
|
logging.error("Output will be ignored") |
|
|
|
if len(good_outputs) == 0: |
|
errors_list = [] |
|
for o, errors in errors: |
|
for error in errors: |
|
errors_list.append(f"{error['message']}: {error['details']}") |
|
errors_list = "\n".join(errors_list) |
|
|
|
error = { |
|
"type": "prompt_outputs_failed_validation", |
|
"message": "Prompt outputs failed validation", |
|
"details": errors_list, |
|
"extra_info": {} |
|
} |
|
|
|
return (False, error, list(good_outputs), node_errors) |
|
|
|
return (True, None, list(good_outputs), node_errors) |
|
|
|
MAXIMUM_HISTORY_SIZE = 10000 |
|
|
|
class PromptQueue: |
|
def __init__(self, server): |
|
self.server = server |
|
self.mutex = threading.RLock() |
|
self.not_empty = threading.Condition(self.mutex) |
|
self.task_counter = 0 |
|
self.queue = [] |
|
self.currently_running = {} |
|
self.history = {} |
|
self.flags = {} |
|
server.prompt_queue = self |
|
|
|
def put(self, item): |
|
with self.mutex: |
|
heapq.heappush(self.queue, item) |
|
self.server.queue_updated() |
|
self.not_empty.notify() |
|
|
|
def get(self, timeout=None): |
|
with self.not_empty: |
|
while len(self.queue) == 0: |
|
self.not_empty.wait(timeout=timeout) |
|
if timeout is not None and len(self.queue) == 0: |
|
return None |
|
item = heapq.heappop(self.queue) |
|
i = self.task_counter |
|
self.currently_running[i] = copy.deepcopy(item) |
|
self.task_counter += 1 |
|
self.server.queue_updated() |
|
return (item, i) |
|
|
|
class ExecutionStatus(NamedTuple): |
|
status_str: Literal['success', 'error'] |
|
completed: bool |
|
messages: List[str] |
|
|
|
def task_done(self, item_id, outputs, |
|
status: Optional['PromptQueue.ExecutionStatus']): |
|
with self.mutex: |
|
prompt = self.currently_running.pop(item_id) |
|
if len(self.history) > MAXIMUM_HISTORY_SIZE: |
|
self.history.pop(next(iter(self.history))) |
|
|
|
status_dict: Optional[dict] = None |
|
if status is not None: |
|
status_dict = copy.deepcopy(status._asdict()) |
|
|
|
self.history[prompt[1]] = { |
|
"prompt": prompt, |
|
"outputs": copy.deepcopy(outputs), |
|
'status': status_dict, |
|
} |
|
self.server.queue_updated() |
|
|
|
def get_current_queue(self): |
|
with self.mutex: |
|
out = [] |
|
for x in self.currently_running.values(): |
|
out += [x] |
|
return (out, copy.deepcopy(self.queue)) |
|
|
|
def get_tasks_remaining(self): |
|
with self.mutex: |
|
return len(self.queue) + len(self.currently_running) |
|
|
|
def wipe_queue(self): |
|
with self.mutex: |
|
self.queue = [] |
|
self.server.queue_updated() |
|
|
|
def delete_queue_item(self, function): |
|
with self.mutex: |
|
for x in range(len(self.queue)): |
|
if function(self.queue[x]): |
|
if len(self.queue) == 1: |
|
self.wipe_queue() |
|
else: |
|
self.queue.pop(x) |
|
heapq.heapify(self.queue) |
|
self.server.queue_updated() |
|
return True |
|
return False |
|
|
|
def get_history(self, prompt_id=None, max_items=None, offset=-1): |
|
with self.mutex: |
|
if prompt_id is None: |
|
out = {} |
|
i = 0 |
|
if offset < 0 and max_items is not None: |
|
offset = len(self.history) - max_items |
|
for k in self.history: |
|
if i >= offset: |
|
out[k] = self.history[k] |
|
if max_items is not None and len(out) >= max_items: |
|
break |
|
i += 1 |
|
return out |
|
elif prompt_id in self.history: |
|
return {prompt_id: copy.deepcopy(self.history[prompt_id])} |
|
else: |
|
return {} |
|
|
|
def wipe_history(self): |
|
with self.mutex: |
|
self.history = {} |
|
|
|
def delete_history_item(self, id_to_delete): |
|
with self.mutex: |
|
self.history.pop(id_to_delete, None) |
|
|
|
def set_flag(self, name, data): |
|
with self.mutex: |
|
self.flags[name] = data |
|
self.not_empty.notify() |
|
|
|
def get_flags(self, reset=True): |
|
with self.mutex: |
|
if reset: |
|
ret = self.flags |
|
self.flags = {} |
|
return ret |
|
else: |
|
return self.flags.copy()
|
|
|