You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
86 lines
3.8 KiB
86 lines
3.8 KiB
import json |
|
import os |
|
import yaml |
|
|
|
import folder_paths |
|
from comfy.sd import load_checkpoint |
|
import os.path as osp |
|
import re |
|
import torch |
|
from safetensors.torch import load_file, save_file |
|
import diffusers_convert |
|
|
|
def load_diffusers(model_path, fp16=True, output_vae=True, output_clip=True, embedding_directory=None): |
|
diffusers_unet_conf = json.load(open(osp.join(model_path, "unet/config.json"))) |
|
diffusers_scheduler_conf = json.load(open(osp.join(model_path, "scheduler/scheduler_config.json"))) |
|
|
|
# magic |
|
v2 = diffusers_unet_conf["sample_size"] == 96 |
|
if 'prediction_type' in diffusers_scheduler_conf: |
|
v_pred = diffusers_scheduler_conf['prediction_type'] == 'v_prediction' |
|
|
|
if v2: |
|
if v_pred: |
|
config_path = folder_paths.get_full_path("configs", 'v2-inference-v.yaml') |
|
else: |
|
config_path = folder_paths.get_full_path("configs", 'v2-inference.yaml') |
|
else: |
|
config_path = folder_paths.get_full_path("configs", 'v1-inference.yaml') |
|
|
|
with open(config_path, 'r') as stream: |
|
config = yaml.safe_load(stream) |
|
|
|
model_config_params = config['model']['params'] |
|
clip_config = model_config_params['cond_stage_config'] |
|
scale_factor = model_config_params['scale_factor'] |
|
vae_config = model_config_params['first_stage_config'] |
|
vae_config['scale_factor'] = scale_factor |
|
model_config_params["unet_config"]["params"]["use_fp16"] = fp16 |
|
|
|
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors") |
|
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors") |
|
text_enc_path = osp.join(model_path, "text_encoder", "model.safetensors") |
|
|
|
# Load models from safetensors if it exists, if it doesn't pytorch |
|
if osp.exists(unet_path): |
|
unet_state_dict = load_file(unet_path, device="cpu") |
|
else: |
|
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin") |
|
unet_state_dict = torch.load(unet_path, map_location="cpu") |
|
|
|
if osp.exists(vae_path): |
|
vae_state_dict = load_file(vae_path, device="cpu") |
|
else: |
|
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin") |
|
vae_state_dict = torch.load(vae_path, map_location="cpu") |
|
|
|
if osp.exists(text_enc_path): |
|
text_enc_dict = load_file(text_enc_path, device="cpu") |
|
else: |
|
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin") |
|
text_enc_dict = torch.load(text_enc_path, map_location="cpu") |
|
|
|
# Convert the UNet model |
|
unet_state_dict = diffusers_convert.convert_unet_state_dict(unet_state_dict) |
|
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()} |
|
|
|
# Convert the VAE model |
|
vae_state_dict = diffusers_convert.convert_vae_state_dict(vae_state_dict) |
|
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()} |
|
|
|
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper |
|
is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict |
|
|
|
if is_v20_model: |
|
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm |
|
text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()} |
|
text_enc_dict = diffusers_convert.convert_text_enc_state_dict_v20(text_enc_dict) |
|
text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()} |
|
else: |
|
text_enc_dict = diffusers_convert.convert_text_enc_state_dict(text_enc_dict) |
|
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()} |
|
|
|
# Put together new checkpoint |
|
sd = {**unet_state_dict, **vae_state_dict, **text_enc_dict} |
|
|
|
return load_checkpoint(embedding_directory=embedding_directory, state_dict=sd, config=config)
|
|
|