You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
190 lines
7.5 KiB
190 lines
7.5 KiB
import torch |
|
from . import model_base |
|
from . import utils |
|
|
|
from . import sd1_clip |
|
from . import sd2_clip |
|
from . import sdxl_clip |
|
|
|
from . import supported_models_base |
|
from . import latent_formats |
|
|
|
from . import diffusers_convert |
|
|
|
class SD15(supported_models_base.BASE): |
|
unet_config = { |
|
"context_dim": 768, |
|
"model_channels": 320, |
|
"use_linear_in_transformer": False, |
|
"adm_in_channels": None, |
|
} |
|
|
|
unet_extra_config = { |
|
"num_heads": 8, |
|
"num_head_channels": -1, |
|
} |
|
|
|
latent_format = latent_formats.SD15 |
|
|
|
def process_clip_state_dict(self, state_dict): |
|
k = list(state_dict.keys()) |
|
for x in k: |
|
if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."): |
|
y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.") |
|
state_dict[y] = state_dict.pop(x) |
|
|
|
if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in state_dict: |
|
ids = state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] |
|
if ids.dtype == torch.float32: |
|
state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round() |
|
|
|
return state_dict |
|
|
|
def clip_target(self): |
|
return supported_models_base.ClipTarget(sd1_clip.SD1Tokenizer, sd1_clip.SD1ClipModel) |
|
|
|
class SD20(supported_models_base.BASE): |
|
unet_config = { |
|
"context_dim": 1024, |
|
"model_channels": 320, |
|
"use_linear_in_transformer": True, |
|
"adm_in_channels": None, |
|
} |
|
|
|
latent_format = latent_formats.SD15 |
|
|
|
def model_type(self, state_dict, prefix=""): |
|
if self.unet_config["in_channels"] == 4: #SD2.0 inpainting models are not v prediction |
|
k = "{}output_blocks.11.1.transformer_blocks.0.norm1.bias".format(prefix) |
|
out = state_dict[k] |
|
if torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out. |
|
return model_base.ModelType.V_PREDICTION |
|
return model_base.ModelType.EPS |
|
|
|
def process_clip_state_dict(self, state_dict): |
|
state_dict = utils.transformers_convert(state_dict, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24) |
|
return state_dict |
|
|
|
def process_clip_state_dict_for_saving(self, state_dict): |
|
replace_prefix = {} |
|
replace_prefix[""] = "cond_stage_model.model." |
|
state_dict = supported_models_base.state_dict_prefix_replace(state_dict, replace_prefix) |
|
state_dict = diffusers_convert.convert_text_enc_state_dict_v20(state_dict) |
|
return state_dict |
|
|
|
def clip_target(self): |
|
return supported_models_base.ClipTarget(sd2_clip.SD2Tokenizer, sd2_clip.SD2ClipModel) |
|
|
|
class SD21UnclipL(SD20): |
|
unet_config = { |
|
"context_dim": 1024, |
|
"model_channels": 320, |
|
"use_linear_in_transformer": True, |
|
"adm_in_channels": 1536, |
|
} |
|
|
|
clip_vision_prefix = "embedder.model.visual." |
|
noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 768} |
|
|
|
|
|
class SD21UnclipH(SD20): |
|
unet_config = { |
|
"context_dim": 1024, |
|
"model_channels": 320, |
|
"use_linear_in_transformer": True, |
|
"adm_in_channels": 2048, |
|
} |
|
|
|
clip_vision_prefix = "embedder.model.visual." |
|
noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1024} |
|
|
|
class SDXLRefiner(supported_models_base.BASE): |
|
unet_config = { |
|
"model_channels": 384, |
|
"use_linear_in_transformer": True, |
|
"context_dim": 1280, |
|
"adm_in_channels": 2560, |
|
"transformer_depth": [0, 4, 4, 0], |
|
} |
|
|
|
latent_format = latent_formats.SDXL |
|
|
|
def get_model(self, state_dict, prefix=""): |
|
return model_base.SDXLRefiner(self) |
|
|
|
def process_clip_state_dict(self, state_dict): |
|
keys_to_replace = {} |
|
replace_prefix = {} |
|
|
|
state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.0.model.", "cond_stage_model.clip_g.transformer.text_model.", 32) |
|
keys_to_replace["conditioner.embedders.0.model.text_projection"] = "cond_stage_model.clip_g.text_projection" |
|
keys_to_replace["conditioner.embedders.0.model.logit_scale"] = "cond_stage_model.clip_g.logit_scale" |
|
|
|
state_dict = supported_models_base.state_dict_key_replace(state_dict, keys_to_replace) |
|
return state_dict |
|
|
|
def process_clip_state_dict_for_saving(self, state_dict): |
|
replace_prefix = {} |
|
state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g") |
|
if "clip_g.transformer.text_model.embeddings.position_ids" in state_dict_g: |
|
state_dict_g.pop("clip_g.transformer.text_model.embeddings.position_ids") |
|
replace_prefix["clip_g"] = "conditioner.embedders.0.model" |
|
state_dict_g = supported_models_base.state_dict_prefix_replace(state_dict_g, replace_prefix) |
|
return state_dict_g |
|
|
|
def clip_target(self): |
|
return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLRefinerClipModel) |
|
|
|
class SDXL(supported_models_base.BASE): |
|
unet_config = { |
|
"model_channels": 320, |
|
"use_linear_in_transformer": True, |
|
"transformer_depth": [0, 2, 10], |
|
"context_dim": 2048, |
|
"adm_in_channels": 2816 |
|
} |
|
|
|
latent_format = latent_formats.SDXL |
|
|
|
def model_type(self, state_dict, prefix=""): |
|
if "v_pred" in state_dict: |
|
return model_base.ModelType.V_PREDICTION |
|
else: |
|
return model_base.ModelType.EPS |
|
|
|
def get_model(self, state_dict, prefix=""): |
|
return model_base.SDXL(self, model_type=self.model_type(state_dict, prefix)) |
|
|
|
def process_clip_state_dict(self, state_dict): |
|
keys_to_replace = {} |
|
replace_prefix = {} |
|
|
|
replace_prefix["conditioner.embedders.0.transformer.text_model"] = "cond_stage_model.clip_l.transformer.text_model" |
|
state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.1.model.", "cond_stage_model.clip_g.transformer.text_model.", 32) |
|
keys_to_replace["conditioner.embedders.1.model.text_projection"] = "cond_stage_model.clip_g.text_projection" |
|
keys_to_replace["conditioner.embedders.1.model.logit_scale"] = "cond_stage_model.clip_g.logit_scale" |
|
|
|
state_dict = supported_models_base.state_dict_prefix_replace(state_dict, replace_prefix) |
|
state_dict = supported_models_base.state_dict_key_replace(state_dict, keys_to_replace) |
|
return state_dict |
|
|
|
def process_clip_state_dict_for_saving(self, state_dict): |
|
replace_prefix = {} |
|
keys_to_replace = {} |
|
state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g") |
|
if "clip_g.transformer.text_model.embeddings.position_ids" in state_dict_g: |
|
state_dict_g.pop("clip_g.transformer.text_model.embeddings.position_ids") |
|
for k in state_dict: |
|
if k.startswith("clip_l"): |
|
state_dict_g[k] = state_dict[k] |
|
|
|
replace_prefix["clip_g"] = "conditioner.embedders.1.model" |
|
replace_prefix["clip_l"] = "conditioner.embedders.0" |
|
state_dict_g = supported_models_base.state_dict_prefix_replace(state_dict_g, replace_prefix) |
|
return state_dict_g |
|
|
|
def clip_target(self): |
|
return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel) |
|
|
|
|
|
models = [SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL]
|
|
|