You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
916 lines
28 KiB
916 lines
28 KiB
import os |
|
import math |
|
import random |
|
import numpy as np |
|
import torch |
|
import cv2 |
|
from torchvision.utils import make_grid |
|
from datetime import datetime |
|
#import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py |
|
|
|
|
|
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" |
|
|
|
|
|
''' |
|
# -------------------------------------------- |
|
# Kai Zhang (github: https://github.com/cszn) |
|
# 03/Mar/2019 |
|
# -------------------------------------------- |
|
# https://github.com/twhui/SRGAN-pyTorch |
|
# https://github.com/xinntao/BasicSR |
|
# -------------------------------------------- |
|
''' |
|
|
|
|
|
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif'] |
|
|
|
|
|
def is_image_file(filename): |
|
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) |
|
|
|
|
|
def get_timestamp(): |
|
return datetime.now().strftime('%y%m%d-%H%M%S') |
|
|
|
|
|
def imshow(x, title=None, cbar=False, figsize=None): |
|
plt.figure(figsize=figsize) |
|
plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray') |
|
if title: |
|
plt.title(title) |
|
if cbar: |
|
plt.colorbar() |
|
plt.show() |
|
|
|
|
|
def surf(Z, cmap='rainbow', figsize=None): |
|
plt.figure(figsize=figsize) |
|
ax3 = plt.axes(projection='3d') |
|
|
|
w, h = Z.shape[:2] |
|
xx = np.arange(0,w,1) |
|
yy = np.arange(0,h,1) |
|
X, Y = np.meshgrid(xx, yy) |
|
ax3.plot_surface(X,Y,Z,cmap=cmap) |
|
#ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap) |
|
plt.show() |
|
|
|
|
|
''' |
|
# -------------------------------------------- |
|
# get image pathes |
|
# -------------------------------------------- |
|
''' |
|
|
|
|
|
def get_image_paths(dataroot): |
|
paths = None # return None if dataroot is None |
|
if dataroot is not None: |
|
paths = sorted(_get_paths_from_images(dataroot)) |
|
return paths |
|
|
|
|
|
def _get_paths_from_images(path): |
|
assert os.path.isdir(path), '{:s} is not a valid directory'.format(path) |
|
images = [] |
|
for dirpath, _, fnames in sorted(os.walk(path)): |
|
for fname in sorted(fnames): |
|
if is_image_file(fname): |
|
img_path = os.path.join(dirpath, fname) |
|
images.append(img_path) |
|
assert images, '{:s} has no valid image file'.format(path) |
|
return images |
|
|
|
|
|
''' |
|
# -------------------------------------------- |
|
# split large images into small images |
|
# -------------------------------------------- |
|
''' |
|
|
|
|
|
def patches_from_image(img, p_size=512, p_overlap=64, p_max=800): |
|
w, h = img.shape[:2] |
|
patches = [] |
|
if w > p_max and h > p_max: |
|
w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int)) |
|
h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int)) |
|
w1.append(w-p_size) |
|
h1.append(h-p_size) |
|
# print(w1) |
|
# print(h1) |
|
for i in w1: |
|
for j in h1: |
|
patches.append(img[i:i+p_size, j:j+p_size,:]) |
|
else: |
|
patches.append(img) |
|
|
|
return patches |
|
|
|
|
|
def imssave(imgs, img_path): |
|
""" |
|
imgs: list, N images of size WxHxC |
|
""" |
|
img_name, ext = os.path.splitext(os.path.basename(img_path)) |
|
|
|
for i, img in enumerate(imgs): |
|
if img.ndim == 3: |
|
img = img[:, :, [2, 1, 0]] |
|
new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png') |
|
cv2.imwrite(new_path, img) |
|
|
|
|
|
def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000): |
|
""" |
|
split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size), |
|
and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max) |
|
will be splitted. |
|
Args: |
|
original_dataroot: |
|
taget_dataroot: |
|
p_size: size of small images |
|
p_overlap: patch size in training is a good choice |
|
p_max: images with smaller size than (p_max)x(p_max) keep unchanged. |
|
""" |
|
paths = get_image_paths(original_dataroot) |
|
for img_path in paths: |
|
# img_name, ext = os.path.splitext(os.path.basename(img_path)) |
|
img = imread_uint(img_path, n_channels=n_channels) |
|
patches = patches_from_image(img, p_size, p_overlap, p_max) |
|
imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path))) |
|
#if original_dataroot == taget_dataroot: |
|
#del img_path |
|
|
|
''' |
|
# -------------------------------------------- |
|
# makedir |
|
# -------------------------------------------- |
|
''' |
|
|
|
|
|
def mkdir(path): |
|
if not os.path.exists(path): |
|
os.makedirs(path) |
|
|
|
|
|
def mkdirs(paths): |
|
if isinstance(paths, str): |
|
mkdir(paths) |
|
else: |
|
for path in paths: |
|
mkdir(path) |
|
|
|
|
|
def mkdir_and_rename(path): |
|
if os.path.exists(path): |
|
new_name = path + '_archived_' + get_timestamp() |
|
print('Path already exists. Rename it to [{:s}]'.format(new_name)) |
|
os.rename(path, new_name) |
|
os.makedirs(path) |
|
|
|
|
|
''' |
|
# -------------------------------------------- |
|
# read image from path |
|
# opencv is fast, but read BGR numpy image |
|
# -------------------------------------------- |
|
''' |
|
|
|
|
|
# -------------------------------------------- |
|
# get uint8 image of size HxWxn_channles (RGB) |
|
# -------------------------------------------- |
|
def imread_uint(path, n_channels=3): |
|
# input: path |
|
# output: HxWx3(RGB or GGG), or HxWx1 (G) |
|
if n_channels == 1: |
|
img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE |
|
img = np.expand_dims(img, axis=2) # HxWx1 |
|
elif n_channels == 3: |
|
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G |
|
if img.ndim == 2: |
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG |
|
else: |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB |
|
return img |
|
|
|
|
|
# -------------------------------------------- |
|
# matlab's imwrite |
|
# -------------------------------------------- |
|
def imsave(img, img_path): |
|
img = np.squeeze(img) |
|
if img.ndim == 3: |
|
img = img[:, :, [2, 1, 0]] |
|
cv2.imwrite(img_path, img) |
|
|
|
def imwrite(img, img_path): |
|
img = np.squeeze(img) |
|
if img.ndim == 3: |
|
img = img[:, :, [2, 1, 0]] |
|
cv2.imwrite(img_path, img) |
|
|
|
|
|
|
|
# -------------------------------------------- |
|
# get single image of size HxWxn_channles (BGR) |
|
# -------------------------------------------- |
|
def read_img(path): |
|
# read image by cv2 |
|
# return: Numpy float32, HWC, BGR, [0,1] |
|
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE |
|
img = img.astype(np.float32) / 255. |
|
if img.ndim == 2: |
|
img = np.expand_dims(img, axis=2) |
|
# some images have 4 channels |
|
if img.shape[2] > 3: |
|
img = img[:, :, :3] |
|
return img |
|
|
|
|
|
''' |
|
# -------------------------------------------- |
|
# image format conversion |
|
# -------------------------------------------- |
|
# numpy(single) <---> numpy(unit) |
|
# numpy(single) <---> tensor |
|
# numpy(unit) <---> tensor |
|
# -------------------------------------------- |
|
''' |
|
|
|
|
|
# -------------------------------------------- |
|
# numpy(single) [0, 1] <---> numpy(unit) |
|
# -------------------------------------------- |
|
|
|
|
|
def uint2single(img): |
|
|
|
return np.float32(img/255.) |
|
|
|
|
|
def single2uint(img): |
|
|
|
return np.uint8((img.clip(0, 1)*255.).round()) |
|
|
|
|
|
def uint162single(img): |
|
|
|
return np.float32(img/65535.) |
|
|
|
|
|
def single2uint16(img): |
|
|
|
return np.uint16((img.clip(0, 1)*65535.).round()) |
|
|
|
|
|
# -------------------------------------------- |
|
# numpy(unit) (HxWxC or HxW) <---> tensor |
|
# -------------------------------------------- |
|
|
|
|
|
# convert uint to 4-dimensional torch tensor |
|
def uint2tensor4(img): |
|
if img.ndim == 2: |
|
img = np.expand_dims(img, axis=2) |
|
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0) |
|
|
|
|
|
# convert uint to 3-dimensional torch tensor |
|
def uint2tensor3(img): |
|
if img.ndim == 2: |
|
img = np.expand_dims(img, axis=2) |
|
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.) |
|
|
|
|
|
# convert 2/3/4-dimensional torch tensor to uint |
|
def tensor2uint(img): |
|
img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy() |
|
if img.ndim == 3: |
|
img = np.transpose(img, (1, 2, 0)) |
|
return np.uint8((img*255.0).round()) |
|
|
|
|
|
# -------------------------------------------- |
|
# numpy(single) (HxWxC) <---> tensor |
|
# -------------------------------------------- |
|
|
|
|
|
# convert single (HxWxC) to 3-dimensional torch tensor |
|
def single2tensor3(img): |
|
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float() |
|
|
|
|
|
# convert single (HxWxC) to 4-dimensional torch tensor |
|
def single2tensor4(img): |
|
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0) |
|
|
|
|
|
# convert torch tensor to single |
|
def tensor2single(img): |
|
img = img.data.squeeze().float().cpu().numpy() |
|
if img.ndim == 3: |
|
img = np.transpose(img, (1, 2, 0)) |
|
|
|
return img |
|
|
|
# convert torch tensor to single |
|
def tensor2single3(img): |
|
img = img.data.squeeze().float().cpu().numpy() |
|
if img.ndim == 3: |
|
img = np.transpose(img, (1, 2, 0)) |
|
elif img.ndim == 2: |
|
img = np.expand_dims(img, axis=2) |
|
return img |
|
|
|
|
|
def single2tensor5(img): |
|
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0) |
|
|
|
|
|
def single32tensor5(img): |
|
return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0) |
|
|
|
|
|
def single42tensor4(img): |
|
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float() |
|
|
|
|
|
# from skimage.io import imread, imsave |
|
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)): |
|
''' |
|
Converts a torch Tensor into an image Numpy array of BGR channel order |
|
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order |
|
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default) |
|
''' |
|
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp |
|
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1] |
|
n_dim = tensor.dim() |
|
if n_dim == 4: |
|
n_img = len(tensor) |
|
img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy() |
|
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR |
|
elif n_dim == 3: |
|
img_np = tensor.numpy() |
|
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR |
|
elif n_dim == 2: |
|
img_np = tensor.numpy() |
|
else: |
|
raise TypeError( |
|
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim)) |
|
if out_type == np.uint8: |
|
img_np = (img_np * 255.0).round() |
|
# Important. Unlike matlab, numpy.unit8() WILL NOT round by default. |
|
return img_np.astype(out_type) |
|
|
|
|
|
''' |
|
# -------------------------------------------- |
|
# Augmentation, flipe and/or rotate |
|
# -------------------------------------------- |
|
# The following two are enough. |
|
# (1) augmet_img: numpy image of WxHxC or WxH |
|
# (2) augment_img_tensor4: tensor image 1xCxWxH |
|
# -------------------------------------------- |
|
''' |
|
|
|
|
|
def augment_img(img, mode=0): |
|
'''Kai Zhang (github: https://github.com/cszn) |
|
''' |
|
if mode == 0: |
|
return img |
|
elif mode == 1: |
|
return np.flipud(np.rot90(img)) |
|
elif mode == 2: |
|
return np.flipud(img) |
|
elif mode == 3: |
|
return np.rot90(img, k=3) |
|
elif mode == 4: |
|
return np.flipud(np.rot90(img, k=2)) |
|
elif mode == 5: |
|
return np.rot90(img) |
|
elif mode == 6: |
|
return np.rot90(img, k=2) |
|
elif mode == 7: |
|
return np.flipud(np.rot90(img, k=3)) |
|
|
|
|
|
def augment_img_tensor4(img, mode=0): |
|
'''Kai Zhang (github: https://github.com/cszn) |
|
''' |
|
if mode == 0: |
|
return img |
|
elif mode == 1: |
|
return img.rot90(1, [2, 3]).flip([2]) |
|
elif mode == 2: |
|
return img.flip([2]) |
|
elif mode == 3: |
|
return img.rot90(3, [2, 3]) |
|
elif mode == 4: |
|
return img.rot90(2, [2, 3]).flip([2]) |
|
elif mode == 5: |
|
return img.rot90(1, [2, 3]) |
|
elif mode == 6: |
|
return img.rot90(2, [2, 3]) |
|
elif mode == 7: |
|
return img.rot90(3, [2, 3]).flip([2]) |
|
|
|
|
|
def augment_img_tensor(img, mode=0): |
|
'''Kai Zhang (github: https://github.com/cszn) |
|
''' |
|
img_size = img.size() |
|
img_np = img.data.cpu().numpy() |
|
if len(img_size) == 3: |
|
img_np = np.transpose(img_np, (1, 2, 0)) |
|
elif len(img_size) == 4: |
|
img_np = np.transpose(img_np, (2, 3, 1, 0)) |
|
img_np = augment_img(img_np, mode=mode) |
|
img_tensor = torch.from_numpy(np.ascontiguousarray(img_np)) |
|
if len(img_size) == 3: |
|
img_tensor = img_tensor.permute(2, 0, 1) |
|
elif len(img_size) == 4: |
|
img_tensor = img_tensor.permute(3, 2, 0, 1) |
|
|
|
return img_tensor.type_as(img) |
|
|
|
|
|
def augment_img_np3(img, mode=0): |
|
if mode == 0: |
|
return img |
|
elif mode == 1: |
|
return img.transpose(1, 0, 2) |
|
elif mode == 2: |
|
return img[::-1, :, :] |
|
elif mode == 3: |
|
img = img[::-1, :, :] |
|
img = img.transpose(1, 0, 2) |
|
return img |
|
elif mode == 4: |
|
return img[:, ::-1, :] |
|
elif mode == 5: |
|
img = img[:, ::-1, :] |
|
img = img.transpose(1, 0, 2) |
|
return img |
|
elif mode == 6: |
|
img = img[:, ::-1, :] |
|
img = img[::-1, :, :] |
|
return img |
|
elif mode == 7: |
|
img = img[:, ::-1, :] |
|
img = img[::-1, :, :] |
|
img = img.transpose(1, 0, 2) |
|
return img |
|
|
|
|
|
def augment_imgs(img_list, hflip=True, rot=True): |
|
# horizontal flip OR rotate |
|
hflip = hflip and random.random() < 0.5 |
|
vflip = rot and random.random() < 0.5 |
|
rot90 = rot and random.random() < 0.5 |
|
|
|
def _augment(img): |
|
if hflip: |
|
img = img[:, ::-1, :] |
|
if vflip: |
|
img = img[::-1, :, :] |
|
if rot90: |
|
img = img.transpose(1, 0, 2) |
|
return img |
|
|
|
return [_augment(img) for img in img_list] |
|
|
|
|
|
''' |
|
# -------------------------------------------- |
|
# modcrop and shave |
|
# -------------------------------------------- |
|
''' |
|
|
|
|
|
def modcrop(img_in, scale): |
|
# img_in: Numpy, HWC or HW |
|
img = np.copy(img_in) |
|
if img.ndim == 2: |
|
H, W = img.shape |
|
H_r, W_r = H % scale, W % scale |
|
img = img[:H - H_r, :W - W_r] |
|
elif img.ndim == 3: |
|
H, W, C = img.shape |
|
H_r, W_r = H % scale, W % scale |
|
img = img[:H - H_r, :W - W_r, :] |
|
else: |
|
raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim)) |
|
return img |
|
|
|
|
|
def shave(img_in, border=0): |
|
# img_in: Numpy, HWC or HW |
|
img = np.copy(img_in) |
|
h, w = img.shape[:2] |
|
img = img[border:h-border, border:w-border] |
|
return img |
|
|
|
|
|
''' |
|
# -------------------------------------------- |
|
# image processing process on numpy image |
|
# channel_convert(in_c, tar_type, img_list): |
|
# rgb2ycbcr(img, only_y=True): |
|
# bgr2ycbcr(img, only_y=True): |
|
# ycbcr2rgb(img): |
|
# -------------------------------------------- |
|
''' |
|
|
|
|
|
def rgb2ycbcr(img, only_y=True): |
|
'''same as matlab rgb2ycbcr |
|
only_y: only return Y channel |
|
Input: |
|
uint8, [0, 255] |
|
float, [0, 1] |
|
''' |
|
in_img_type = img.dtype |
|
img.astype(np.float32) |
|
if in_img_type != np.uint8: |
|
img *= 255. |
|
# convert |
|
if only_y: |
|
rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0 |
|
else: |
|
rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], |
|
[24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128] |
|
if in_img_type == np.uint8: |
|
rlt = rlt.round() |
|
else: |
|
rlt /= 255. |
|
return rlt.astype(in_img_type) |
|
|
|
|
|
def ycbcr2rgb(img): |
|
'''same as matlab ycbcr2rgb |
|
Input: |
|
uint8, [0, 255] |
|
float, [0, 1] |
|
''' |
|
in_img_type = img.dtype |
|
img.astype(np.float32) |
|
if in_img_type != np.uint8: |
|
img *= 255. |
|
# convert |
|
rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071], |
|
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836] |
|
if in_img_type == np.uint8: |
|
rlt = rlt.round() |
|
else: |
|
rlt /= 255. |
|
return rlt.astype(in_img_type) |
|
|
|
|
|
def bgr2ycbcr(img, only_y=True): |
|
'''bgr version of rgb2ycbcr |
|
only_y: only return Y channel |
|
Input: |
|
uint8, [0, 255] |
|
float, [0, 1] |
|
''' |
|
in_img_type = img.dtype |
|
img.astype(np.float32) |
|
if in_img_type != np.uint8: |
|
img *= 255. |
|
# convert |
|
if only_y: |
|
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0 |
|
else: |
|
rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], |
|
[65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128] |
|
if in_img_type == np.uint8: |
|
rlt = rlt.round() |
|
else: |
|
rlt /= 255. |
|
return rlt.astype(in_img_type) |
|
|
|
|
|
def channel_convert(in_c, tar_type, img_list): |
|
# conversion among BGR, gray and y |
|
if in_c == 3 and tar_type == 'gray': # BGR to gray |
|
gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list] |
|
return [np.expand_dims(img, axis=2) for img in gray_list] |
|
elif in_c == 3 and tar_type == 'y': # BGR to y |
|
y_list = [bgr2ycbcr(img, only_y=True) for img in img_list] |
|
return [np.expand_dims(img, axis=2) for img in y_list] |
|
elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR |
|
return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list] |
|
else: |
|
return img_list |
|
|
|
|
|
''' |
|
# -------------------------------------------- |
|
# metric, PSNR and SSIM |
|
# -------------------------------------------- |
|
''' |
|
|
|
|
|
# -------------------------------------------- |
|
# PSNR |
|
# -------------------------------------------- |
|
def calculate_psnr(img1, img2, border=0): |
|
# img1 and img2 have range [0, 255] |
|
#img1 = img1.squeeze() |
|
#img2 = img2.squeeze() |
|
if not img1.shape == img2.shape: |
|
raise ValueError('Input images must have the same dimensions.') |
|
h, w = img1.shape[:2] |
|
img1 = img1[border:h-border, border:w-border] |
|
img2 = img2[border:h-border, border:w-border] |
|
|
|
img1 = img1.astype(np.float64) |
|
img2 = img2.astype(np.float64) |
|
mse = np.mean((img1 - img2)**2) |
|
if mse == 0: |
|
return float('inf') |
|
return 20 * math.log10(255.0 / math.sqrt(mse)) |
|
|
|
|
|
# -------------------------------------------- |
|
# SSIM |
|
# -------------------------------------------- |
|
def calculate_ssim(img1, img2, border=0): |
|
'''calculate SSIM |
|
the same outputs as MATLAB's |
|
img1, img2: [0, 255] |
|
''' |
|
#img1 = img1.squeeze() |
|
#img2 = img2.squeeze() |
|
if not img1.shape == img2.shape: |
|
raise ValueError('Input images must have the same dimensions.') |
|
h, w = img1.shape[:2] |
|
img1 = img1[border:h-border, border:w-border] |
|
img2 = img2[border:h-border, border:w-border] |
|
|
|
if img1.ndim == 2: |
|
return ssim(img1, img2) |
|
elif img1.ndim == 3: |
|
if img1.shape[2] == 3: |
|
ssims = [] |
|
for i in range(3): |
|
ssims.append(ssim(img1[:,:,i], img2[:,:,i])) |
|
return np.array(ssims).mean() |
|
elif img1.shape[2] == 1: |
|
return ssim(np.squeeze(img1), np.squeeze(img2)) |
|
else: |
|
raise ValueError('Wrong input image dimensions.') |
|
|
|
|
|
def ssim(img1, img2): |
|
C1 = (0.01 * 255)**2 |
|
C2 = (0.03 * 255)**2 |
|
|
|
img1 = img1.astype(np.float64) |
|
img2 = img2.astype(np.float64) |
|
kernel = cv2.getGaussianKernel(11, 1.5) |
|
window = np.outer(kernel, kernel.transpose()) |
|
|
|
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid |
|
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] |
|
mu1_sq = mu1**2 |
|
mu2_sq = mu2**2 |
|
mu1_mu2 = mu1 * mu2 |
|
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq |
|
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq |
|
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 |
|
|
|
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * |
|
(sigma1_sq + sigma2_sq + C2)) |
|
return ssim_map.mean() |
|
|
|
|
|
''' |
|
# -------------------------------------------- |
|
# matlab's bicubic imresize (numpy and torch) [0, 1] |
|
# -------------------------------------------- |
|
''' |
|
|
|
|
|
# matlab 'imresize' function, now only support 'bicubic' |
|
def cubic(x): |
|
absx = torch.abs(x) |
|
absx2 = absx**2 |
|
absx3 = absx**3 |
|
return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \ |
|
(-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx)) |
|
|
|
|
|
def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing): |
|
if (scale < 1) and (antialiasing): |
|
# Use a modified kernel to simultaneously interpolate and antialias- larger kernel width |
|
kernel_width = kernel_width / scale |
|
|
|
# Output-space coordinates |
|
x = torch.linspace(1, out_length, out_length) |
|
|
|
# Input-space coordinates. Calculate the inverse mapping such that 0.5 |
|
# in output space maps to 0.5 in input space, and 0.5+scale in output |
|
# space maps to 1.5 in input space. |
|
u = x / scale + 0.5 * (1 - 1 / scale) |
|
|
|
# What is the left-most pixel that can be involved in the computation? |
|
left = torch.floor(u - kernel_width / 2) |
|
|
|
# What is the maximum number of pixels that can be involved in the |
|
# computation? Note: it's OK to use an extra pixel here; if the |
|
# corresponding weights are all zero, it will be eliminated at the end |
|
# of this function. |
|
P = math.ceil(kernel_width) + 2 |
|
|
|
# The indices of the input pixels involved in computing the k-th output |
|
# pixel are in row k of the indices matrix. |
|
indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view( |
|
1, P).expand(out_length, P) |
|
|
|
# The weights used to compute the k-th output pixel are in row k of the |
|
# weights matrix. |
|
distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices |
|
# apply cubic kernel |
|
if (scale < 1) and (antialiasing): |
|
weights = scale * cubic(distance_to_center * scale) |
|
else: |
|
weights = cubic(distance_to_center) |
|
# Normalize the weights matrix so that each row sums to 1. |
|
weights_sum = torch.sum(weights, 1).view(out_length, 1) |
|
weights = weights / weights_sum.expand(out_length, P) |
|
|
|
# If a column in weights is all zero, get rid of it. only consider the first and last column. |
|
weights_zero_tmp = torch.sum((weights == 0), 0) |
|
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6): |
|
indices = indices.narrow(1, 1, P - 2) |
|
weights = weights.narrow(1, 1, P - 2) |
|
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6): |
|
indices = indices.narrow(1, 0, P - 2) |
|
weights = weights.narrow(1, 0, P - 2) |
|
weights = weights.contiguous() |
|
indices = indices.contiguous() |
|
sym_len_s = -indices.min() + 1 |
|
sym_len_e = indices.max() - in_length |
|
indices = indices + sym_len_s - 1 |
|
return weights, indices, int(sym_len_s), int(sym_len_e) |
|
|
|
|
|
# -------------------------------------------- |
|
# imresize for tensor image [0, 1] |
|
# -------------------------------------------- |
|
def imresize(img, scale, antialiasing=True): |
|
# Now the scale should be the same for H and W |
|
# input: img: pytorch tensor, CHW or HW [0,1] |
|
# output: CHW or HW [0,1] w/o round |
|
need_squeeze = True if img.dim() == 2 else False |
|
if need_squeeze: |
|
img.unsqueeze_(0) |
|
in_C, in_H, in_W = img.size() |
|
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) |
|
kernel_width = 4 |
|
kernel = 'cubic' |
|
|
|
# Return the desired dimension order for performing the resize. The |
|
# strategy is to perform the resize first along the dimension with the |
|
# smallest scale factor. |
|
# Now we do not support this. |
|
|
|
# get weights and indices |
|
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( |
|
in_H, out_H, scale, kernel, kernel_width, antialiasing) |
|
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( |
|
in_W, out_W, scale, kernel, kernel_width, antialiasing) |
|
# process H dimension |
|
# symmetric copying |
|
img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W) |
|
img_aug.narrow(1, sym_len_Hs, in_H).copy_(img) |
|
|
|
sym_patch = img[:, :sym_len_Hs, :] |
|
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(1, inv_idx) |
|
img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv) |
|
|
|
sym_patch = img[:, -sym_len_He:, :] |
|
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(1, inv_idx) |
|
img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) |
|
|
|
out_1 = torch.FloatTensor(in_C, out_H, in_W) |
|
kernel_width = weights_H.size(1) |
|
for i in range(out_H): |
|
idx = int(indices_H[i][0]) |
|
for j in range(out_C): |
|
out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) |
|
|
|
# process W dimension |
|
# symmetric copying |
|
out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We) |
|
out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1) |
|
|
|
sym_patch = out_1[:, :, :sym_len_Ws] |
|
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(2, inv_idx) |
|
out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv) |
|
|
|
sym_patch = out_1[:, :, -sym_len_We:] |
|
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(2, inv_idx) |
|
out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) |
|
|
|
out_2 = torch.FloatTensor(in_C, out_H, out_W) |
|
kernel_width = weights_W.size(1) |
|
for i in range(out_W): |
|
idx = int(indices_W[i][0]) |
|
for j in range(out_C): |
|
out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i]) |
|
if need_squeeze: |
|
out_2.squeeze_() |
|
return out_2 |
|
|
|
|
|
# -------------------------------------------- |
|
# imresize for numpy image [0, 1] |
|
# -------------------------------------------- |
|
def imresize_np(img, scale, antialiasing=True): |
|
# Now the scale should be the same for H and W |
|
# input: img: Numpy, HWC or HW [0,1] |
|
# output: HWC or HW [0,1] w/o round |
|
img = torch.from_numpy(img) |
|
need_squeeze = True if img.dim() == 2 else False |
|
if need_squeeze: |
|
img.unsqueeze_(2) |
|
|
|
in_H, in_W, in_C = img.size() |
|
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) |
|
kernel_width = 4 |
|
kernel = 'cubic' |
|
|
|
# Return the desired dimension order for performing the resize. The |
|
# strategy is to perform the resize first along the dimension with the |
|
# smallest scale factor. |
|
# Now we do not support this. |
|
|
|
# get weights and indices |
|
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( |
|
in_H, out_H, scale, kernel, kernel_width, antialiasing) |
|
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( |
|
in_W, out_W, scale, kernel, kernel_width, antialiasing) |
|
# process H dimension |
|
# symmetric copying |
|
img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C) |
|
img_aug.narrow(0, sym_len_Hs, in_H).copy_(img) |
|
|
|
sym_patch = img[:sym_len_Hs, :, :] |
|
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(0, inv_idx) |
|
img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv) |
|
|
|
sym_patch = img[-sym_len_He:, :, :] |
|
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(0, inv_idx) |
|
img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) |
|
|
|
out_1 = torch.FloatTensor(out_H, in_W, in_C) |
|
kernel_width = weights_H.size(1) |
|
for i in range(out_H): |
|
idx = int(indices_H[i][0]) |
|
for j in range(out_C): |
|
out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i]) |
|
|
|
# process W dimension |
|
# symmetric copying |
|
out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C) |
|
out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1) |
|
|
|
sym_patch = out_1[:, :sym_len_Ws, :] |
|
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(1, inv_idx) |
|
out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv) |
|
|
|
sym_patch = out_1[:, -sym_len_We:, :] |
|
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(1, inv_idx) |
|
out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) |
|
|
|
out_2 = torch.FloatTensor(out_H, out_W, in_C) |
|
kernel_width = weights_W.size(1) |
|
for i in range(out_W): |
|
idx = int(indices_W[i][0]) |
|
for j in range(out_C): |
|
out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i]) |
|
if need_squeeze: |
|
out_2.squeeze_() |
|
|
|
return out_2.numpy() |
|
|
|
|
|
if __name__ == '__main__': |
|
print('---') |
|
# img = imread_uint('test.bmp', 3) |
|
# img = uint2single(img) |
|
# img_bicubic = imresize_np(img, 1/4) |