You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
705 lines
27 KiB
705 lines
27 KiB
from .k_diffusion import sampling as k_diffusion_sampling |
|
from .extra_samplers import uni_pc |
|
import torch |
|
import collections |
|
from comfy import model_management |
|
import math |
|
import logging |
|
|
|
def get_area_and_mult(conds, x_in, timestep_in): |
|
area = (x_in.shape[2], x_in.shape[3], 0, 0) |
|
strength = 1.0 |
|
|
|
if 'timestep_start' in conds: |
|
timestep_start = conds['timestep_start'] |
|
if timestep_in[0] > timestep_start: |
|
return None |
|
if 'timestep_end' in conds: |
|
timestep_end = conds['timestep_end'] |
|
if timestep_in[0] < timestep_end: |
|
return None |
|
if 'area' in conds: |
|
area = conds['area'] |
|
if 'strength' in conds: |
|
strength = conds['strength'] |
|
|
|
input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] |
|
if 'mask' in conds: |
|
# Scale the mask to the size of the input |
|
# The mask should have been resized as we began the sampling process |
|
mask_strength = 1.0 |
|
if "mask_strength" in conds: |
|
mask_strength = conds["mask_strength"] |
|
mask = conds['mask'] |
|
assert(mask.shape[1] == x_in.shape[2]) |
|
assert(mask.shape[2] == x_in.shape[3]) |
|
mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength |
|
mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1) |
|
else: |
|
mask = torch.ones_like(input_x) |
|
mult = mask * strength |
|
|
|
if 'mask' not in conds: |
|
rr = 8 |
|
if area[2] != 0: |
|
for t in range(rr): |
|
mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1)) |
|
if (area[0] + area[2]) < x_in.shape[2]: |
|
for t in range(rr): |
|
mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1)) |
|
if area[3] != 0: |
|
for t in range(rr): |
|
mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1)) |
|
if (area[1] + area[3]) < x_in.shape[3]: |
|
for t in range(rr): |
|
mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1)) |
|
|
|
conditioning = {} |
|
model_conds = conds["model_conds"] |
|
for c in model_conds: |
|
conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area) |
|
|
|
control = conds.get('control', None) |
|
|
|
patches = None |
|
if 'gligen' in conds: |
|
gligen = conds['gligen'] |
|
patches = {} |
|
gligen_type = gligen[0] |
|
gligen_model = gligen[1] |
|
if gligen_type == "position": |
|
gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device) |
|
else: |
|
gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device) |
|
|
|
patches['middle_patch'] = [gligen_patch] |
|
|
|
cond_obj = collections.namedtuple('cond_obj', ['input_x', 'mult', 'conditioning', 'area', 'control', 'patches']) |
|
return cond_obj(input_x, mult, conditioning, area, control, patches) |
|
|
|
def cond_equal_size(c1, c2): |
|
if c1 is c2: |
|
return True |
|
if c1.keys() != c2.keys(): |
|
return False |
|
for k in c1: |
|
if not c1[k].can_concat(c2[k]): |
|
return False |
|
return True |
|
|
|
def can_concat_cond(c1, c2): |
|
if c1.input_x.shape != c2.input_x.shape: |
|
return False |
|
|
|
def objects_concatable(obj1, obj2): |
|
if (obj1 is None) != (obj2 is None): |
|
return False |
|
if obj1 is not None: |
|
if obj1 is not obj2: |
|
return False |
|
return True |
|
|
|
if not objects_concatable(c1.control, c2.control): |
|
return False |
|
|
|
if not objects_concatable(c1.patches, c2.patches): |
|
return False |
|
|
|
return cond_equal_size(c1.conditioning, c2.conditioning) |
|
|
|
def cond_cat(c_list): |
|
c_crossattn = [] |
|
c_concat = [] |
|
c_adm = [] |
|
crossattn_max_len = 0 |
|
|
|
temp = {} |
|
for x in c_list: |
|
for k in x: |
|
cur = temp.get(k, []) |
|
cur.append(x[k]) |
|
temp[k] = cur |
|
|
|
out = {} |
|
for k in temp: |
|
conds = temp[k] |
|
out[k] = conds[0].concat(conds[1:]) |
|
|
|
return out |
|
|
|
def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): |
|
out_cond = torch.zeros_like(x_in) |
|
out_count = torch.ones_like(x_in) * 1e-37 |
|
|
|
out_uncond = torch.zeros_like(x_in) |
|
out_uncond_count = torch.ones_like(x_in) * 1e-37 |
|
|
|
COND = 0 |
|
UNCOND = 1 |
|
|
|
to_run = [] |
|
for x in cond: |
|
p = get_area_and_mult(x, x_in, timestep) |
|
if p is None: |
|
continue |
|
|
|
to_run += [(p, COND)] |
|
if uncond is not None: |
|
for x in uncond: |
|
p = get_area_and_mult(x, x_in, timestep) |
|
if p is None: |
|
continue |
|
|
|
to_run += [(p, UNCOND)] |
|
|
|
while len(to_run) > 0: |
|
first = to_run[0] |
|
first_shape = first[0][0].shape |
|
to_batch_temp = [] |
|
for x in range(len(to_run)): |
|
if can_concat_cond(to_run[x][0], first[0]): |
|
to_batch_temp += [x] |
|
|
|
to_batch_temp.reverse() |
|
to_batch = to_batch_temp[:1] |
|
|
|
free_memory = model_management.get_free_memory(x_in.device) |
|
for i in range(1, len(to_batch_temp) + 1): |
|
batch_amount = to_batch_temp[:len(to_batch_temp)//i] |
|
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:] |
|
if model.memory_required(input_shape) < free_memory: |
|
to_batch = batch_amount |
|
break |
|
|
|
input_x = [] |
|
mult = [] |
|
c = [] |
|
cond_or_uncond = [] |
|
area = [] |
|
control = None |
|
patches = None |
|
for x in to_batch: |
|
o = to_run.pop(x) |
|
p = o[0] |
|
input_x.append(p.input_x) |
|
mult.append(p.mult) |
|
c.append(p.conditioning) |
|
area.append(p.area) |
|
cond_or_uncond.append(o[1]) |
|
control = p.control |
|
patches = p.patches |
|
|
|
batch_chunks = len(cond_or_uncond) |
|
input_x = torch.cat(input_x) |
|
c = cond_cat(c) |
|
timestep_ = torch.cat([timestep] * batch_chunks) |
|
|
|
if control is not None: |
|
c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond)) |
|
|
|
transformer_options = {} |
|
if 'transformer_options' in model_options: |
|
transformer_options = model_options['transformer_options'].copy() |
|
|
|
if patches is not None: |
|
if "patches" in transformer_options: |
|
cur_patches = transformer_options["patches"].copy() |
|
for p in patches: |
|
if p in cur_patches: |
|
cur_patches[p] = cur_patches[p] + patches[p] |
|
else: |
|
cur_patches[p] = patches[p] |
|
transformer_options["patches"] = cur_patches |
|
else: |
|
transformer_options["patches"] = patches |
|
|
|
transformer_options["cond_or_uncond"] = cond_or_uncond[:] |
|
transformer_options["sigmas"] = timestep |
|
|
|
c['transformer_options'] = transformer_options |
|
|
|
if 'model_function_wrapper' in model_options: |
|
output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks) |
|
else: |
|
output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks) |
|
del input_x |
|
|
|
for o in range(batch_chunks): |
|
if cond_or_uncond[o] == COND: |
|
out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o] |
|
out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o] |
|
else: |
|
out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o] |
|
out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o] |
|
del mult |
|
|
|
out_cond /= out_count |
|
del out_count |
|
out_uncond /= out_uncond_count |
|
del out_uncond_count |
|
return out_cond, out_uncond |
|
|
|
#The main sampling function shared by all the samplers |
|
#Returns denoised |
|
def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None): |
|
if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False: |
|
uncond_ = None |
|
else: |
|
uncond_ = uncond |
|
|
|
cond_pred, uncond_pred = calc_cond_uncond_batch(model, cond, uncond_, x, timestep, model_options) |
|
if "sampler_cfg_function" in model_options: |
|
args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep, |
|
"cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options} |
|
cfg_result = x - model_options["sampler_cfg_function"](args) |
|
else: |
|
cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale |
|
|
|
for fn in model_options.get("sampler_post_cfg_function", []): |
|
args = {"denoised": cfg_result, "cond": cond, "uncond": uncond, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred, |
|
"sigma": timestep, "model_options": model_options, "input": x} |
|
cfg_result = fn(args) |
|
|
|
return cfg_result |
|
|
|
class CFGNoisePredictor(torch.nn.Module): |
|
def __init__(self, model): |
|
super().__init__() |
|
self.inner_model = model |
|
def apply_model(self, x, timestep, cond, uncond, cond_scale, model_options={}, seed=None): |
|
out = sampling_function(self.inner_model, x, timestep, uncond, cond, cond_scale, model_options=model_options, seed=seed) |
|
return out |
|
def forward(self, *args, **kwargs): |
|
return self.apply_model(*args, **kwargs) |
|
|
|
class KSamplerX0Inpaint(torch.nn.Module): |
|
def __init__(self, model, sigmas): |
|
super().__init__() |
|
self.inner_model = model |
|
self.sigmas = sigmas |
|
def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None): |
|
if denoise_mask is not None: |
|
if "denoise_mask_function" in model_options: |
|
denoise_mask = model_options["denoise_mask_function"](sigma, denoise_mask, extra_options={"model": self.inner_model, "sigmas": self.sigmas}) |
|
latent_mask = 1. - denoise_mask |
|
x = x * denoise_mask + self.inner_model.inner_model.model_sampling.noise_scaling(sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1)), self.noise, self.latent_image) * latent_mask |
|
out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, model_options=model_options, seed=seed) |
|
if denoise_mask is not None: |
|
out = out * denoise_mask + self.latent_image * latent_mask |
|
return out |
|
|
|
def simple_scheduler(model, steps): |
|
s = model.model_sampling |
|
sigs = [] |
|
ss = len(s.sigmas) / steps |
|
for x in range(steps): |
|
sigs += [float(s.sigmas[-(1 + int(x * ss))])] |
|
sigs += [0.0] |
|
return torch.FloatTensor(sigs) |
|
|
|
def ddim_scheduler(model, steps): |
|
s = model.model_sampling |
|
sigs = [] |
|
ss = max(len(s.sigmas) // steps, 1) |
|
x = 1 |
|
while x < len(s.sigmas): |
|
sigs += [float(s.sigmas[x])] |
|
x += ss |
|
sigs = sigs[::-1] |
|
sigs += [0.0] |
|
return torch.FloatTensor(sigs) |
|
|
|
def normal_scheduler(model, steps, sgm=False, floor=False): |
|
s = model.model_sampling |
|
start = s.timestep(s.sigma_max) |
|
end = s.timestep(s.sigma_min) |
|
|
|
if sgm: |
|
timesteps = torch.linspace(start, end, steps + 1)[:-1] |
|
else: |
|
timesteps = torch.linspace(start, end, steps) |
|
|
|
sigs = [] |
|
for x in range(len(timesteps)): |
|
ts = timesteps[x] |
|
sigs.append(s.sigma(ts)) |
|
sigs += [0.0] |
|
return torch.FloatTensor(sigs) |
|
|
|
def get_mask_aabb(masks): |
|
if masks.numel() == 0: |
|
return torch.zeros((0, 4), device=masks.device, dtype=torch.int) |
|
|
|
b = masks.shape[0] |
|
|
|
bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int) |
|
is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool) |
|
for i in range(b): |
|
mask = masks[i] |
|
if mask.numel() == 0: |
|
continue |
|
if torch.max(mask != 0) == False: |
|
is_empty[i] = True |
|
continue |
|
y, x = torch.where(mask) |
|
bounding_boxes[i, 0] = torch.min(x) |
|
bounding_boxes[i, 1] = torch.min(y) |
|
bounding_boxes[i, 2] = torch.max(x) |
|
bounding_boxes[i, 3] = torch.max(y) |
|
|
|
return bounding_boxes, is_empty |
|
|
|
def resolve_areas_and_cond_masks(conditions, h, w, device): |
|
# We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes. |
|
# While we're doing this, we can also resolve the mask device and scaling for performance reasons |
|
for i in range(len(conditions)): |
|
c = conditions[i] |
|
if 'area' in c: |
|
area = c['area'] |
|
if area[0] == "percentage": |
|
modified = c.copy() |
|
area = (max(1, round(area[1] * h)), max(1, round(area[2] * w)), round(area[3] * h), round(area[4] * w)) |
|
modified['area'] = area |
|
c = modified |
|
conditions[i] = c |
|
|
|
if 'mask' in c: |
|
mask = c['mask'] |
|
mask = mask.to(device=device) |
|
modified = c.copy() |
|
if len(mask.shape) == 2: |
|
mask = mask.unsqueeze(0) |
|
if mask.shape[1] != h or mask.shape[2] != w: |
|
mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1) |
|
|
|
if modified.get("set_area_to_bounds", False): |
|
bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0) |
|
boxes, is_empty = get_mask_aabb(bounds) |
|
if is_empty[0]: |
|
# Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway) |
|
modified['area'] = (8, 8, 0, 0) |
|
else: |
|
box = boxes[0] |
|
H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0]) |
|
H = max(8, H) |
|
W = max(8, W) |
|
area = (int(H), int(W), int(Y), int(X)) |
|
modified['area'] = area |
|
|
|
modified['mask'] = mask |
|
conditions[i] = modified |
|
|
|
def create_cond_with_same_area_if_none(conds, c): |
|
if 'area' not in c: |
|
return |
|
|
|
c_area = c['area'] |
|
smallest = None |
|
for x in conds: |
|
if 'area' in x: |
|
a = x['area'] |
|
if c_area[2] >= a[2] and c_area[3] >= a[3]: |
|
if a[0] + a[2] >= c_area[0] + c_area[2]: |
|
if a[1] + a[3] >= c_area[1] + c_area[3]: |
|
if smallest is None: |
|
smallest = x |
|
elif 'area' not in smallest: |
|
smallest = x |
|
else: |
|
if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]: |
|
smallest = x |
|
else: |
|
if smallest is None: |
|
smallest = x |
|
if smallest is None: |
|
return |
|
if 'area' in smallest: |
|
if smallest['area'] == c_area: |
|
return |
|
|
|
out = c.copy() |
|
out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied? |
|
conds += [out] |
|
|
|
def calculate_start_end_timesteps(model, conds): |
|
s = model.model_sampling |
|
for t in range(len(conds)): |
|
x = conds[t] |
|
|
|
timestep_start = None |
|
timestep_end = None |
|
if 'start_percent' in x: |
|
timestep_start = s.percent_to_sigma(x['start_percent']) |
|
if 'end_percent' in x: |
|
timestep_end = s.percent_to_sigma(x['end_percent']) |
|
|
|
if (timestep_start is not None) or (timestep_end is not None): |
|
n = x.copy() |
|
if (timestep_start is not None): |
|
n['timestep_start'] = timestep_start |
|
if (timestep_end is not None): |
|
n['timestep_end'] = timestep_end |
|
conds[t] = n |
|
|
|
def pre_run_control(model, conds): |
|
s = model.model_sampling |
|
for t in range(len(conds)): |
|
x = conds[t] |
|
|
|
timestep_start = None |
|
timestep_end = None |
|
percent_to_timestep_function = lambda a: s.percent_to_sigma(a) |
|
if 'control' in x: |
|
x['control'].pre_run(model, percent_to_timestep_function) |
|
|
|
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func): |
|
cond_cnets = [] |
|
cond_other = [] |
|
uncond_cnets = [] |
|
uncond_other = [] |
|
for t in range(len(conds)): |
|
x = conds[t] |
|
if 'area' not in x: |
|
if name in x and x[name] is not None: |
|
cond_cnets.append(x[name]) |
|
else: |
|
cond_other.append((x, t)) |
|
for t in range(len(uncond)): |
|
x = uncond[t] |
|
if 'area' not in x: |
|
if name in x and x[name] is not None: |
|
uncond_cnets.append(x[name]) |
|
else: |
|
uncond_other.append((x, t)) |
|
|
|
if len(uncond_cnets) > 0: |
|
return |
|
|
|
for x in range(len(cond_cnets)): |
|
temp = uncond_other[x % len(uncond_other)] |
|
o = temp[0] |
|
if name in o and o[name] is not None: |
|
n = o.copy() |
|
n[name] = uncond_fill_func(cond_cnets, x) |
|
uncond += [n] |
|
else: |
|
n = o.copy() |
|
n[name] = uncond_fill_func(cond_cnets, x) |
|
uncond[temp[1]] = n |
|
|
|
def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs): |
|
for t in range(len(conds)): |
|
x = conds[t] |
|
params = x.copy() |
|
params["device"] = device |
|
params["noise"] = noise |
|
params["width"] = params.get("width", noise.shape[3] * 8) |
|
params["height"] = params.get("height", noise.shape[2] * 8) |
|
params["prompt_type"] = params.get("prompt_type", prompt_type) |
|
for k in kwargs: |
|
if k not in params: |
|
params[k] = kwargs[k] |
|
|
|
out = model_function(**params) |
|
x = x.copy() |
|
model_conds = x['model_conds'].copy() |
|
for k in out: |
|
model_conds[k] = out[k] |
|
x['model_conds'] = model_conds |
|
conds[t] = x |
|
return conds |
|
|
|
class Sampler: |
|
def sample(self): |
|
pass |
|
|
|
def max_denoise(self, model_wrap, sigmas): |
|
max_sigma = float(model_wrap.inner_model.model_sampling.sigma_max) |
|
sigma = float(sigmas[0]) |
|
return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma |
|
|
|
KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral", |
|
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu", |
|
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm"] |
|
|
|
class KSAMPLER(Sampler): |
|
def __init__(self, sampler_function, extra_options={}, inpaint_options={}): |
|
self.sampler_function = sampler_function |
|
self.extra_options = extra_options |
|
self.inpaint_options = inpaint_options |
|
|
|
def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False): |
|
extra_args["denoise_mask"] = denoise_mask |
|
model_k = KSamplerX0Inpaint(model_wrap, sigmas) |
|
model_k.latent_image = latent_image |
|
if self.inpaint_options.get("random", False): #TODO: Should this be the default? |
|
generator = torch.manual_seed(extra_args.get("seed", 41) + 1) |
|
model_k.noise = torch.randn(noise.shape, generator=generator, device="cpu").to(noise.dtype).to(noise.device) |
|
else: |
|
model_k.noise = noise |
|
|
|
noise = model_wrap.inner_model.model_sampling.noise_scaling(sigmas[0], noise, latent_image, self.max_denoise(model_wrap, sigmas)) |
|
|
|
k_callback = None |
|
total_steps = len(sigmas) - 1 |
|
if callback is not None: |
|
k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps) |
|
|
|
samples = self.sampler_function(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **self.extra_options) |
|
samples = model_wrap.inner_model.model_sampling.inverse_noise_scaling(sigmas[-1], samples) |
|
return samples |
|
|
|
|
|
def ksampler(sampler_name, extra_options={}, inpaint_options={}): |
|
if sampler_name == "dpm_fast": |
|
def dpm_fast_function(model, noise, sigmas, extra_args, callback, disable): |
|
sigma_min = sigmas[-1] |
|
if sigma_min == 0: |
|
sigma_min = sigmas[-2] |
|
total_steps = len(sigmas) - 1 |
|
return k_diffusion_sampling.sample_dpm_fast(model, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=callback, disable=disable) |
|
sampler_function = dpm_fast_function |
|
elif sampler_name == "dpm_adaptive": |
|
def dpm_adaptive_function(model, noise, sigmas, extra_args, callback, disable, **extra_options): |
|
sigma_min = sigmas[-1] |
|
if sigma_min == 0: |
|
sigma_min = sigmas[-2] |
|
return k_diffusion_sampling.sample_dpm_adaptive(model, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=callback, disable=disable, **extra_options) |
|
sampler_function = dpm_adaptive_function |
|
else: |
|
sampler_function = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name)) |
|
|
|
return KSAMPLER(sampler_function, extra_options, inpaint_options) |
|
|
|
def wrap_model(model): |
|
model_denoise = CFGNoisePredictor(model) |
|
return model_denoise |
|
|
|
def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None): |
|
positive = positive[:] |
|
negative = negative[:] |
|
|
|
resolve_areas_and_cond_masks(positive, noise.shape[2], noise.shape[3], device) |
|
resolve_areas_and_cond_masks(negative, noise.shape[2], noise.shape[3], device) |
|
|
|
model_wrap = wrap_model(model) |
|
|
|
calculate_start_end_timesteps(model, negative) |
|
calculate_start_end_timesteps(model, positive) |
|
|
|
if latent_image is not None and torch.count_nonzero(latent_image) > 0: #Don't shift the empty latent image. |
|
latent_image = model.process_latent_in(latent_image) |
|
|
|
if hasattr(model, 'extra_conds'): |
|
positive = encode_model_conds(model.extra_conds, positive, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask, seed=seed) |
|
negative = encode_model_conds(model.extra_conds, negative, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask, seed=seed) |
|
|
|
#make sure each cond area has an opposite one with the same area |
|
for c in positive: |
|
create_cond_with_same_area_if_none(negative, c) |
|
for c in negative: |
|
create_cond_with_same_area_if_none(positive, c) |
|
|
|
pre_run_control(model, negative + positive) |
|
|
|
apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x]) |
|
apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x]) |
|
|
|
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed} |
|
|
|
samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar) |
|
return model.process_latent_out(samples.to(torch.float32)) |
|
|
|
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"] |
|
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"] |
|
|
|
def calculate_sigmas_scheduler(model, scheduler_name, steps): |
|
if scheduler_name == "karras": |
|
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max)) |
|
elif scheduler_name == "exponential": |
|
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max)) |
|
elif scheduler_name == "normal": |
|
sigmas = normal_scheduler(model, steps) |
|
elif scheduler_name == "simple": |
|
sigmas = simple_scheduler(model, steps) |
|
elif scheduler_name == "ddim_uniform": |
|
sigmas = ddim_scheduler(model, steps) |
|
elif scheduler_name == "sgm_uniform": |
|
sigmas = normal_scheduler(model, steps, sgm=True) |
|
else: |
|
logging.error("error invalid scheduler {}".format(scheduler_name)) |
|
return sigmas |
|
|
|
def sampler_object(name): |
|
if name == "uni_pc": |
|
sampler = KSAMPLER(uni_pc.sample_unipc) |
|
elif name == "uni_pc_bh2": |
|
sampler = KSAMPLER(uni_pc.sample_unipc_bh2) |
|
elif name == "ddim": |
|
sampler = ksampler("euler", inpaint_options={"random": True}) |
|
else: |
|
sampler = ksampler(name) |
|
return sampler |
|
|
|
class KSampler: |
|
SCHEDULERS = SCHEDULER_NAMES |
|
SAMPLERS = SAMPLER_NAMES |
|
DISCARD_PENULTIMATE_SIGMA_SAMPLERS = set(('dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2')) |
|
|
|
def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}): |
|
self.model = model |
|
self.device = device |
|
if scheduler not in self.SCHEDULERS: |
|
scheduler = self.SCHEDULERS[0] |
|
if sampler not in self.SAMPLERS: |
|
sampler = self.SAMPLERS[0] |
|
self.scheduler = scheduler |
|
self.sampler = sampler |
|
self.set_steps(steps, denoise) |
|
self.denoise = denoise |
|
self.model_options = model_options |
|
|
|
def calculate_sigmas(self, steps): |
|
sigmas = None |
|
|
|
discard_penultimate_sigma = False |
|
if self.sampler in self.DISCARD_PENULTIMATE_SIGMA_SAMPLERS: |
|
steps += 1 |
|
discard_penultimate_sigma = True |
|
|
|
sigmas = calculate_sigmas_scheduler(self.model, self.scheduler, steps) |
|
|
|
if discard_penultimate_sigma: |
|
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) |
|
return sigmas |
|
|
|
def set_steps(self, steps, denoise=None): |
|
self.steps = steps |
|
if denoise is None or denoise > 0.9999: |
|
self.sigmas = self.calculate_sigmas(steps).to(self.device) |
|
else: |
|
new_steps = int(steps/denoise) |
|
sigmas = self.calculate_sigmas(new_steps).to(self.device) |
|
self.sigmas = sigmas[-(steps + 1):] |
|
|
|
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None): |
|
if sigmas is None: |
|
sigmas = self.sigmas |
|
|
|
if last_step is not None and last_step < (len(sigmas) - 1): |
|
sigmas = sigmas[:last_step + 1] |
|
if force_full_denoise: |
|
sigmas[-1] = 0 |
|
|
|
if start_step is not None: |
|
if start_step < (len(sigmas) - 1): |
|
sigmas = sigmas[start_step:] |
|
else: |
|
if latent_image is not None: |
|
return latent_image |
|
else: |
|
return torch.zeros_like(noise) |
|
|
|
sampler = sampler_object(self.sampler) |
|
|
|
return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
|
|
|