You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
170 lines
5.2 KiB
170 lines
5.2 KiB
# based on https://github.com/isl-org/MiDaS |
|
|
|
import cv2 |
|
import torch |
|
import torch.nn as nn |
|
from torchvision.transforms import Compose |
|
|
|
from ldm.modules.midas.midas.dpt_depth import DPTDepthModel |
|
from ldm.modules.midas.midas.midas_net import MidasNet |
|
from ldm.modules.midas.midas.midas_net_custom import MidasNet_small |
|
from ldm.modules.midas.midas.transforms import Resize, NormalizeImage, PrepareForNet |
|
|
|
|
|
ISL_PATHS = { |
|
"dpt_large": "midas_models/dpt_large-midas-2f21e586.pt", |
|
"dpt_hybrid": "midas_models/dpt_hybrid-midas-501f0c75.pt", |
|
"midas_v21": "", |
|
"midas_v21_small": "", |
|
} |
|
|
|
|
|
def disabled_train(self, mode=True): |
|
"""Overwrite model.train with this function to make sure train/eval mode |
|
does not change anymore.""" |
|
return self |
|
|
|
|
|
def load_midas_transform(model_type): |
|
# https://github.com/isl-org/MiDaS/blob/master/run.py |
|
# load transform only |
|
if model_type == "dpt_large": # DPT-Large |
|
net_w, net_h = 384, 384 |
|
resize_mode = "minimal" |
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
|
|
elif model_type == "dpt_hybrid": # DPT-Hybrid |
|
net_w, net_h = 384, 384 |
|
resize_mode = "minimal" |
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
|
|
elif model_type == "midas_v21": |
|
net_w, net_h = 384, 384 |
|
resize_mode = "upper_bound" |
|
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
|
|
elif model_type == "midas_v21_small": |
|
net_w, net_h = 256, 256 |
|
resize_mode = "upper_bound" |
|
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
|
|
else: |
|
assert False, f"model_type '{model_type}' not implemented, use: --model_type large" |
|
|
|
transform = Compose( |
|
[ |
|
Resize( |
|
net_w, |
|
net_h, |
|
resize_target=None, |
|
keep_aspect_ratio=True, |
|
ensure_multiple_of=32, |
|
resize_method=resize_mode, |
|
image_interpolation_method=cv2.INTER_CUBIC, |
|
), |
|
normalization, |
|
PrepareForNet(), |
|
] |
|
) |
|
|
|
return transform |
|
|
|
|
|
def load_model(model_type): |
|
# https://github.com/isl-org/MiDaS/blob/master/run.py |
|
# load network |
|
model_path = ISL_PATHS[model_type] |
|
if model_type == "dpt_large": # DPT-Large |
|
model = DPTDepthModel( |
|
path=model_path, |
|
backbone="vitl16_384", |
|
non_negative=True, |
|
) |
|
net_w, net_h = 384, 384 |
|
resize_mode = "minimal" |
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
|
|
elif model_type == "dpt_hybrid": # DPT-Hybrid |
|
model = DPTDepthModel( |
|
path=model_path, |
|
backbone="vitb_rn50_384", |
|
non_negative=True, |
|
) |
|
net_w, net_h = 384, 384 |
|
resize_mode = "minimal" |
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
|
|
elif model_type == "midas_v21": |
|
model = MidasNet(model_path, non_negative=True) |
|
net_w, net_h = 384, 384 |
|
resize_mode = "upper_bound" |
|
normalization = NormalizeImage( |
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] |
|
) |
|
|
|
elif model_type == "midas_v21_small": |
|
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True, |
|
non_negative=True, blocks={'expand': True}) |
|
net_w, net_h = 256, 256 |
|
resize_mode = "upper_bound" |
|
normalization = NormalizeImage( |
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] |
|
) |
|
|
|
else: |
|
print(f"model_type '{model_type}' not implemented, use: --model_type large") |
|
assert False |
|
|
|
transform = Compose( |
|
[ |
|
Resize( |
|
net_w, |
|
net_h, |
|
resize_target=None, |
|
keep_aspect_ratio=True, |
|
ensure_multiple_of=32, |
|
resize_method=resize_mode, |
|
image_interpolation_method=cv2.INTER_CUBIC, |
|
), |
|
normalization, |
|
PrepareForNet(), |
|
] |
|
) |
|
|
|
return model.eval(), transform |
|
|
|
|
|
class MiDaSInference(nn.Module): |
|
MODEL_TYPES_TORCH_HUB = [ |
|
"DPT_Large", |
|
"DPT_Hybrid", |
|
"MiDaS_small" |
|
] |
|
MODEL_TYPES_ISL = [ |
|
"dpt_large", |
|
"dpt_hybrid", |
|
"midas_v21", |
|
"midas_v21_small", |
|
] |
|
|
|
def __init__(self, model_type): |
|
super().__init__() |
|
assert (model_type in self.MODEL_TYPES_ISL) |
|
model, _ = load_model(model_type) |
|
self.model = model |
|
self.model.train = disabled_train |
|
|
|
def forward(self, x): |
|
# x in 0..1 as produced by calling self.transform on a 0..1 float64 numpy array |
|
# NOTE: we expect that the correct transform has been called during dataloading. |
|
with torch.no_grad(): |
|
prediction = self.model(x) |
|
prediction = torch.nn.functional.interpolate( |
|
prediction.unsqueeze(1), |
|
size=x.shape[2:], |
|
mode="bicubic", |
|
align_corners=False, |
|
) |
|
assert prediction.shape == (x.shape[0], 1, x.shape[2], x.shape[3]) |
|
return prediction |
|
|
|
|