The most powerful and modular stable diffusion GUI, api and backend with a graph/nodes interface.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

105 lines
3.6 KiB

from functools import reduce
import math
import operator
import numpy as np
from skimage import transform
import torch
from torch import nn
def translate2d(tx, ty):
mat = [[1, 0, tx],
[0, 1, ty],
[0, 0, 1]]
return torch.tensor(mat, dtype=torch.float32)
def scale2d(sx, sy):
mat = [[sx, 0, 0],
[ 0, sy, 0],
[ 0, 0, 1]]
return torch.tensor(mat, dtype=torch.float32)
def rotate2d(theta):
mat = [[torch.cos(theta), torch.sin(-theta), 0],
[torch.sin(theta), torch.cos(theta), 0],
[ 0, 0, 1]]
return torch.tensor(mat, dtype=torch.float32)
class KarrasAugmentationPipeline:
def __init__(self, a_prob=0.12, a_scale=2**0.2, a_aniso=2**0.2, a_trans=1/8):
self.a_prob = a_prob
self.a_scale = a_scale
self.a_aniso = a_aniso
self.a_trans = a_trans
def __call__(self, image):
h, w = image.size
mats = [translate2d(h / 2 - 0.5, w / 2 - 0.5)]
# x-flip
a0 = torch.randint(2, []).float()
mats.append(scale2d(1 - 2 * a0, 1))
# y-flip
do = (torch.rand([]) < self.a_prob).float()
a1 = torch.randint(2, []).float() * do
mats.append(scale2d(1, 1 - 2 * a1))
# scaling
do = (torch.rand([]) < self.a_prob).float()
a2 = torch.randn([]) * do
mats.append(scale2d(self.a_scale ** a2, self.a_scale ** a2))
# rotation
do = (torch.rand([]) < self.a_prob).float()
a3 = (torch.rand([]) * 2 * math.pi - math.pi) * do
mats.append(rotate2d(-a3))
# anisotropy
do = (torch.rand([]) < self.a_prob).float()
a4 = (torch.rand([]) * 2 * math.pi - math.pi) * do
a5 = torch.randn([]) * do
mats.append(rotate2d(a4))
mats.append(scale2d(self.a_aniso ** a5, self.a_aniso ** -a5))
mats.append(rotate2d(-a4))
# translation
do = (torch.rand([]) < self.a_prob).float()
a6 = torch.randn([]) * do
a7 = torch.randn([]) * do
mats.append(translate2d(self.a_trans * w * a6, self.a_trans * h * a7))
# form the transformation matrix and conditioning vector
mats.append(translate2d(-h / 2 + 0.5, -w / 2 + 0.5))
mat = reduce(operator.matmul, mats)
cond = torch.stack([a0, a1, a2, a3.cos() - 1, a3.sin(), a5 * a4.cos(), a5 * a4.sin(), a6, a7])
# apply the transformation
image_orig = np.array(image, dtype=np.float32) / 255
if image_orig.ndim == 2:
image_orig = image_orig[..., None]
tf = transform.AffineTransform(mat.numpy())
image = transform.warp(image_orig, tf.inverse, order=3, mode='reflect', cval=0.5, clip=False, preserve_range=True)
image_orig = torch.as_tensor(image_orig).movedim(2, 0) * 2 - 1
image = torch.as_tensor(image).movedim(2, 0) * 2 - 1
return image, image_orig, cond
class KarrasAugmentWrapper(nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, input, sigma, aug_cond=None, mapping_cond=None, **kwargs):
if aug_cond is None:
aug_cond = input.new_zeros([input.shape[0], 9])
if mapping_cond is None:
mapping_cond = aug_cond
else:
mapping_cond = torch.cat([aug_cond, mapping_cond], dim=1)
return self.inner_model(input, sigma, mapping_cond=mapping_cond, **kwargs)
def set_skip_stages(self, skip_stages):
return self.inner_model.set_skip_stages(skip_stages)
def set_patch_size(self, patch_size):
return self.inner_model.set_patch_size(patch_size)