The most powerful and modular stable diffusion GUI, api and backend with a graph/nodes interface.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

62 lines
2.2 KiB

import torch
import comfy.model_management
def prepare_noise(latent, seed, disable_noise):
latent_image = latent["samples"]
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
else:
batch_index = 0
if "batch_index" in latent:
batch_index = latent["batch_index"]
generator = torch.manual_seed(seed)
for i in range(batch_index):
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
return noise
def create_mask(latent, noise):
noise_mask = None
device = comfy.model_management.get_torch_device()
if "noise_mask" in latent:
noise_mask = latent['noise_mask']
noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
noise_mask = noise_mask.round()
noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
noise_mask = torch.cat([noise_mask] * noise.shape[0])
noise_mask = noise_mask.to(device)
return noise_mask
def broadcast_cond(cond, noise):
device = comfy.model_management.get_torch_device()
copy = []
for p in cond:
t = p[0]
if t.shape[0] < noise.shape[0]:
t = torch.cat([t] * noise.shape[0])
t = t.to(device)
copy += [[t] + p[1:]]
return copy
def load_c_nets(positive, negative):
def get_models(cond):
models = []
for c in cond:
if 'control' in c[1]:
models += [c[1]['control']]
if 'gligen' in c[1]:
models += [c[1]['gligen'][1]]
return models
return get_models(positive) + get_models(negative)
def load_additional_models(positive, negative):
models = load_c_nets(positive, negative)
comfy.model_management.load_controlnet_gpu(models)
return models
def cleanup_additional_models(models):
for m in models:
m.cleanup()