You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
173 lines
6.0 KiB
173 lines
6.0 KiB
import folder_paths |
|
import comfy.sd |
|
import comfy.model_sampling |
|
import torch |
|
|
|
class LCM(comfy.model_sampling.EPS): |
|
def calculate_denoised(self, sigma, model_output, model_input): |
|
timestep = self.timestep(sigma).view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) |
|
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) |
|
x0 = model_input - model_output * sigma |
|
|
|
sigma_data = 0.5 |
|
scaled_timestep = timestep * 10.0 #timestep_scaling |
|
|
|
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2) |
|
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5 |
|
|
|
return c_out * x0 + c_skip * model_input |
|
|
|
class ModelSamplingDiscreteLCM(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.sigma_data = 1.0 |
|
timesteps = 1000 |
|
beta_start = 0.00085 |
|
beta_end = 0.012 |
|
|
|
betas = torch.linspace(beta_start**0.5, beta_end**0.5, timesteps, dtype=torch.float32) ** 2 |
|
alphas = 1.0 - betas |
|
alphas_cumprod = torch.cumprod(alphas, dim=0) |
|
|
|
original_timesteps = 50 |
|
self.skip_steps = timesteps // original_timesteps |
|
|
|
|
|
alphas_cumprod_valid = torch.zeros((original_timesteps), dtype=torch.float32) |
|
for x in range(original_timesteps): |
|
alphas_cumprod_valid[original_timesteps - 1 - x] = alphas_cumprod[timesteps - 1 - x * self.skip_steps] |
|
|
|
sigmas = ((1 - alphas_cumprod_valid) / alphas_cumprod_valid) ** 0.5 |
|
self.set_sigmas(sigmas) |
|
|
|
def set_sigmas(self, sigmas): |
|
self.register_buffer('sigmas', sigmas) |
|
self.register_buffer('log_sigmas', sigmas.log()) |
|
|
|
@property |
|
def sigma_min(self): |
|
return self.sigmas[0] |
|
|
|
@property |
|
def sigma_max(self): |
|
return self.sigmas[-1] |
|
|
|
def timestep(self, sigma): |
|
log_sigma = sigma.log() |
|
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None] |
|
return dists.abs().argmin(dim=0).view(sigma.shape) * self.skip_steps + (self.skip_steps - 1) |
|
|
|
def sigma(self, timestep): |
|
t = torch.clamp(((timestep - (self.skip_steps - 1)) / self.skip_steps).float(), min=0, max=(len(self.sigmas) - 1)) |
|
low_idx = t.floor().long() |
|
high_idx = t.ceil().long() |
|
w = t.frac() |
|
log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx] |
|
return log_sigma.exp() |
|
|
|
def percent_to_sigma(self, percent): |
|
if percent <= 0.0: |
|
return torch.tensor(999999999.9) |
|
if percent >= 1.0: |
|
return torch.tensor(0.0) |
|
percent = 1.0 - percent |
|
return self.sigma(torch.tensor(percent * 999.0)) |
|
|
|
|
|
def rescale_zero_terminal_snr_sigmas(sigmas): |
|
alphas_cumprod = 1 / ((sigmas * sigmas) + 1) |
|
alphas_bar_sqrt = alphas_cumprod.sqrt() |
|
|
|
# Store old values. |
|
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() |
|
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() |
|
|
|
# Shift so the last timestep is zero. |
|
alphas_bar_sqrt -= (alphas_bar_sqrt_T) |
|
|
|
# Scale so the first timestep is back to the old value. |
|
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) |
|
|
|
# Convert alphas_bar_sqrt to betas |
|
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt |
|
alphas_bar[-1] = 4.8973451890853435e-08 |
|
return ((1 - alphas_bar) / alphas_bar) ** 0.5 |
|
|
|
class ModelSamplingDiscrete: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model": ("MODEL",), |
|
"sampling": (["eps", "v_prediction", "lcm"],), |
|
"zsnr": ("BOOLEAN", {"default": False}), |
|
}} |
|
|
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "patch" |
|
|
|
CATEGORY = "advanced/model" |
|
|
|
def patch(self, model, sampling, zsnr): |
|
m = model.clone() |
|
|
|
sampling_base = comfy.model_sampling.ModelSamplingDiscrete |
|
if sampling == "eps": |
|
sampling_type = comfy.model_sampling.EPS |
|
elif sampling == "v_prediction": |
|
sampling_type = comfy.model_sampling.V_PREDICTION |
|
elif sampling == "lcm": |
|
sampling_type = LCM |
|
sampling_base = ModelSamplingDiscreteLCM |
|
|
|
class ModelSamplingAdvanced(sampling_base, sampling_type): |
|
pass |
|
|
|
model_sampling = ModelSamplingAdvanced() |
|
if zsnr: |
|
model_sampling.set_sigmas(rescale_zero_terminal_snr_sigmas(model_sampling.sigmas)) |
|
|
|
m.add_object_patch("model_sampling", model_sampling) |
|
return (m, ) |
|
|
|
class RescaleCFG: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model": ("MODEL",), |
|
"multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
}} |
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "patch" |
|
|
|
CATEGORY = "advanced/model" |
|
|
|
def patch(self, model, multiplier): |
|
def rescale_cfg(args): |
|
cond = args["cond"] |
|
uncond = args["uncond"] |
|
cond_scale = args["cond_scale"] |
|
sigma = args["sigma"] |
|
sigma = sigma.view(sigma.shape[:1] + (1,) * (cond.ndim - 1)) |
|
x_orig = args["input"] |
|
|
|
#rescale cfg has to be done on v-pred model output |
|
x = x_orig / (sigma * sigma + 1.0) |
|
cond = ((x - (x_orig - cond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma) |
|
uncond = ((x - (x_orig - uncond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma) |
|
|
|
#rescalecfg |
|
x_cfg = uncond + cond_scale * (cond - uncond) |
|
ro_pos = torch.std(cond, dim=(1,2,3), keepdim=True) |
|
ro_cfg = torch.std(x_cfg, dim=(1,2,3), keepdim=True) |
|
|
|
x_rescaled = x_cfg * (ro_pos / ro_cfg) |
|
x_final = multiplier * x_rescaled + (1.0 - multiplier) * x_cfg |
|
|
|
return x_orig - (x - x_final * sigma / (sigma * sigma + 1.0) ** 0.5) |
|
|
|
m = model.clone() |
|
m.set_model_sampler_cfg_function(rescale_cfg) |
|
return (m, ) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"ModelSamplingDiscrete": ModelSamplingDiscrete, |
|
"RescaleCFG": RescaleCFG, |
|
}
|
|
|