You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
942 lines
37 KiB
942 lines
37 KiB
# pytorch_diffusion + derived encoder decoder |
|
import math |
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
from einops import rearrange |
|
from typing import Optional, Any |
|
|
|
from ..attention import MemoryEfficientCrossAttention |
|
from comfy import model_management |
|
|
|
if model_management.xformers_enabled_vae(): |
|
import xformers |
|
import xformers.ops |
|
|
|
def get_timestep_embedding(timesteps, embedding_dim): |
|
""" |
|
This matches the implementation in Denoising Diffusion Probabilistic Models: |
|
From Fairseq. |
|
Build sinusoidal embeddings. |
|
This matches the implementation in tensor2tensor, but differs slightly |
|
from the description in Section 3.5 of "Attention Is All You Need". |
|
""" |
|
assert len(timesteps.shape) == 1 |
|
|
|
half_dim = embedding_dim // 2 |
|
emb = math.log(10000) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) |
|
emb = emb.to(device=timesteps.device) |
|
emb = timesteps.float()[:, None] * emb[None, :] |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) |
|
if embedding_dim % 2 == 1: # zero pad |
|
emb = torch.nn.functional.pad(emb, (0,1,0,0)) |
|
return emb |
|
|
|
|
|
def nonlinearity(x): |
|
# swish |
|
return x*torch.sigmoid(x) |
|
|
|
|
|
def Normalize(in_channels, num_groups=32): |
|
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) |
|
|
|
|
|
class Upsample(nn.Module): |
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
self.conv = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
def forward(self, x): |
|
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") |
|
if self.with_conv: |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Downsample(nn.Module): |
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
# no asymmetric padding in torch conv, must do it ourselves |
|
self.conv = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=3, |
|
stride=2, |
|
padding=0) |
|
|
|
def forward(self, x, already_padded=False): |
|
if self.with_conv: |
|
if not already_padded: |
|
pad = (0,1,0,1) |
|
x = torch.nn.functional.pad(x, pad, mode="constant", value=0) |
|
x = self.conv(x) |
|
else: |
|
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) |
|
return x |
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, |
|
dropout, temb_channels=512): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
|
|
self.swish = torch.nn.SiLU(inplace=True) |
|
self.norm1 = Normalize(in_channels) |
|
self.conv1 = torch.nn.Conv2d(in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
if temb_channels > 0: |
|
self.temb_proj = torch.nn.Linear(temb_channels, |
|
out_channels) |
|
self.norm2 = Normalize(out_channels) |
|
self.dropout = torch.nn.Dropout(dropout, inplace=True) |
|
self.conv2 = torch.nn.Conv2d(out_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
self.conv_shortcut = torch.nn.Conv2d(in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
else: |
|
self.nin_shortcut = torch.nn.Conv2d(in_channels, |
|
out_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
|
|
def forward(self, x, temb): |
|
h = x |
|
h = self.norm1(h) |
|
h = self.swish(h) |
|
h = self.conv1(h) |
|
|
|
if temb is not None: |
|
h = h + self.temb_proj(self.swish(temb))[:,:,None,None] |
|
|
|
h = self.norm2(h) |
|
h = self.swish(h) |
|
h = self.dropout(h) |
|
h = self.conv2(h) |
|
|
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
x = self.conv_shortcut(x) |
|
else: |
|
x = self.nin_shortcut(x) |
|
|
|
return x+h |
|
|
|
|
|
class AttnBlock(nn.Module): |
|
def __init__(self, in_channels): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
|
|
self.norm = Normalize(in_channels) |
|
self.q = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.k = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.v = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.proj_out = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
|
|
def forward(self, x): |
|
h_ = x |
|
h_ = self.norm(h_) |
|
q = self.q(h_) |
|
k = self.k(h_) |
|
v = self.v(h_) |
|
|
|
# compute attention |
|
b,c,h,w = q.shape |
|
scale = (int(c)**(-0.5)) |
|
|
|
q = q.reshape(b,c,h*w) |
|
q = q.permute(0,2,1) # b,hw,c |
|
k = k.reshape(b,c,h*w) # b,c,hw |
|
v = v.reshape(b,c,h*w) |
|
|
|
r1 = torch.zeros_like(k, device=q.device) |
|
|
|
mem_free_total = model_management.get_free_memory(q.device) |
|
|
|
gb = 1024 ** 3 |
|
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size() |
|
modifier = 3 if q.element_size() == 2 else 2.5 |
|
mem_required = tensor_size * modifier |
|
steps = 1 |
|
|
|
if mem_required > mem_free_total: |
|
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) |
|
|
|
while True: |
|
try: |
|
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] |
|
for i in range(0, q.shape[1], slice_size): |
|
end = i + slice_size |
|
s1 = torch.bmm(q[:, i:end], k) * scale |
|
|
|
s2 = torch.nn.functional.softmax(s1, dim=2).permute(0,2,1) |
|
del s1 |
|
|
|
r1[:, :, i:end] = torch.bmm(v, s2) |
|
del s2 |
|
break |
|
except model_management.OOM_EXCEPTION as e: |
|
steps *= 2 |
|
if steps > 128: |
|
raise e |
|
print("out of memory error, increasing steps and trying again", steps) |
|
|
|
h_ = r1.reshape(b,c,h,w) |
|
del r1 |
|
|
|
h_ = self.proj_out(h_) |
|
|
|
return x+h_ |
|
|
|
class MemoryEfficientAttnBlock(nn.Module): |
|
""" |
|
Uses xformers efficient implementation, |
|
see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 |
|
Note: this is a single-head self-attention operation |
|
""" |
|
# |
|
def __init__(self, in_channels): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
|
|
self.norm = Normalize(in_channels) |
|
self.q = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.k = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.v = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.proj_out = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.attention_op: Optional[Any] = None |
|
|
|
def forward(self, x): |
|
h_ = x |
|
h_ = self.norm(h_) |
|
q = self.q(h_) |
|
k = self.k(h_) |
|
v = self.v(h_) |
|
|
|
# compute attention |
|
B, C, H, W = q.shape |
|
q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v)) |
|
|
|
q, k, v = map( |
|
lambda t: t.unsqueeze(3) |
|
.reshape(B, t.shape[1], 1, C) |
|
.permute(0, 2, 1, 3) |
|
.reshape(B * 1, t.shape[1], C) |
|
.contiguous(), |
|
(q, k, v), |
|
) |
|
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op) |
|
|
|
out = ( |
|
out.unsqueeze(0) |
|
.reshape(B, 1, out.shape[1], C) |
|
.permute(0, 2, 1, 3) |
|
.reshape(B, out.shape[1], C) |
|
) |
|
out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C) |
|
out = self.proj_out(out) |
|
return x+out |
|
|
|
class MemoryEfficientAttnBlockPytorch(nn.Module): |
|
def __init__(self, in_channels): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
|
|
self.norm = Normalize(in_channels) |
|
self.q = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.k = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.v = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.proj_out = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.attention_op: Optional[Any] = None |
|
|
|
def forward(self, x): |
|
h_ = x |
|
h_ = self.norm(h_) |
|
q = self.q(h_) |
|
k = self.k(h_) |
|
v = self.v(h_) |
|
|
|
# compute attention |
|
B, C, H, W = q.shape |
|
q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v)) |
|
|
|
q, k, v = map( |
|
lambda t: t.unsqueeze(3) |
|
.reshape(B, t.shape[1], 1, C) |
|
.permute(0, 2, 1, 3) |
|
.reshape(B * 1, t.shape[1], C) |
|
.contiguous(), |
|
(q, k, v), |
|
) |
|
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False) |
|
|
|
out = ( |
|
out.unsqueeze(0) |
|
.reshape(B, 1, out.shape[1], C) |
|
.permute(0, 2, 1, 3) |
|
.reshape(B, out.shape[1], C) |
|
) |
|
out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C) |
|
out = self.proj_out(out) |
|
return x+out |
|
|
|
class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention): |
|
def forward(self, x, context=None, mask=None): |
|
b, c, h, w = x.shape |
|
x = rearrange(x, 'b c h w -> b (h w) c') |
|
out = super().forward(x, context=context, mask=mask) |
|
out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c) |
|
return x + out |
|
|
|
|
|
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None): |
|
assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown' |
|
if model_management.xformers_enabled_vae() and attn_type == "vanilla": |
|
attn_type = "vanilla-xformers" |
|
if model_management.pytorch_attention_enabled() and attn_type == "vanilla": |
|
attn_type = "vanilla-pytorch" |
|
print(f"making attention of type '{attn_type}' with {in_channels} in_channels") |
|
if attn_type == "vanilla": |
|
assert attn_kwargs is None |
|
return AttnBlock(in_channels) |
|
elif attn_type == "vanilla-xformers": |
|
print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...") |
|
return MemoryEfficientAttnBlock(in_channels) |
|
elif attn_type == "vanilla-pytorch": |
|
return MemoryEfficientAttnBlockPytorch(in_channels) |
|
elif type == "memory-efficient-cross-attn": |
|
attn_kwargs["query_dim"] = in_channels |
|
return MemoryEfficientCrossAttentionWrapper(**attn_kwargs) |
|
elif attn_type == "none": |
|
return nn.Identity(in_channels) |
|
else: |
|
raise NotImplementedError() |
|
|
|
|
|
class Model(nn.Module): |
|
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, |
|
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, |
|
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"): |
|
super().__init__() |
|
if use_linear_attn: attn_type = "linear" |
|
self.ch = ch |
|
self.temb_ch = self.ch*4 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
|
|
self.use_timestep = use_timestep |
|
if self.use_timestep: |
|
# timestep embedding |
|
self.temb = nn.Module() |
|
self.temb.dense = nn.ModuleList([ |
|
torch.nn.Linear(self.ch, |
|
self.temb_ch), |
|
torch.nn.Linear(self.temb_ch, |
|
self.temb_ch), |
|
]) |
|
|
|
# downsampling |
|
self.conv_in = torch.nn.Conv2d(in_channels, |
|
self.ch, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
curr_res = resolution |
|
in_ch_mult = (1,)+tuple(ch_mult) |
|
self.down = nn.ModuleList() |
|
for i_level in range(self.num_resolutions): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_in = ch*in_ch_mult[i_level] |
|
block_out = ch*ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks): |
|
block.append(ResnetBlock(in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout)) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(make_attn(block_in, attn_type=attn_type)) |
|
down = nn.Module() |
|
down.block = block |
|
down.attn = attn |
|
if i_level != self.num_resolutions-1: |
|
down.downsample = Downsample(block_in, resamp_with_conv) |
|
curr_res = curr_res // 2 |
|
self.down.append(down) |
|
|
|
# middle |
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock(in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) |
|
self.mid.block_2 = ResnetBlock(in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
|
|
# upsampling |
|
self.up = nn.ModuleList() |
|
for i_level in reversed(range(self.num_resolutions)): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_out = ch*ch_mult[i_level] |
|
skip_in = ch*ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks+1): |
|
if i_block == self.num_res_blocks: |
|
skip_in = ch*in_ch_mult[i_level] |
|
block.append(ResnetBlock(in_channels=block_in+skip_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout)) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(make_attn(block_in, attn_type=attn_type)) |
|
up = nn.Module() |
|
up.block = block |
|
up.attn = attn |
|
if i_level != 0: |
|
up.upsample = Upsample(block_in, resamp_with_conv) |
|
curr_res = curr_res * 2 |
|
self.up.insert(0, up) # prepend to get consistent order |
|
|
|
# end |
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d(block_in, |
|
out_ch, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
def forward(self, x, t=None, context=None): |
|
#assert x.shape[2] == x.shape[3] == self.resolution |
|
if context is not None: |
|
# assume aligned context, cat along channel axis |
|
x = torch.cat((x, context), dim=1) |
|
if self.use_timestep: |
|
# timestep embedding |
|
assert t is not None |
|
temb = get_timestep_embedding(t, self.ch) |
|
temb = self.temb.dense[0](temb) |
|
temb = nonlinearity(temb) |
|
temb = self.temb.dense[1](temb) |
|
else: |
|
temb = None |
|
|
|
# downsampling |
|
hs = [self.conv_in(x)] |
|
for i_level in range(self.num_resolutions): |
|
for i_block in range(self.num_res_blocks): |
|
h = self.down[i_level].block[i_block](hs[-1], temb) |
|
if len(self.down[i_level].attn) > 0: |
|
h = self.down[i_level].attn[i_block](h) |
|
hs.append(h) |
|
if i_level != self.num_resolutions-1: |
|
hs.append(self.down[i_level].downsample(hs[-1])) |
|
|
|
# middle |
|
h = hs[-1] |
|
h = self.mid.block_1(h, temb) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h, temb) |
|
|
|
# upsampling |
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks+1): |
|
h = self.up[i_level].block[i_block]( |
|
torch.cat([h, hs.pop()], dim=1), temb) |
|
if len(self.up[i_level].attn) > 0: |
|
h = self.up[i_level].attn[i_block](h) |
|
if i_level != 0: |
|
h = self.up[i_level].upsample(h) |
|
|
|
# end |
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
def get_last_layer(self): |
|
return self.conv_out.weight |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, |
|
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, |
|
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla", |
|
**ignore_kwargs): |
|
super().__init__() |
|
if use_linear_attn: attn_type = "linear" |
|
self.ch = ch |
|
self.temb_ch = 0 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
|
|
# downsampling |
|
self.conv_in = torch.nn.Conv2d(in_channels, |
|
self.ch, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
curr_res = resolution |
|
in_ch_mult = (1,)+tuple(ch_mult) |
|
self.in_ch_mult = in_ch_mult |
|
self.down = nn.ModuleList() |
|
for i_level in range(self.num_resolutions): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_in = ch*in_ch_mult[i_level] |
|
block_out = ch*ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks): |
|
block.append(ResnetBlock(in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout)) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(make_attn(block_in, attn_type=attn_type)) |
|
down = nn.Module() |
|
down.block = block |
|
down.attn = attn |
|
if i_level != self.num_resolutions-1: |
|
down.downsample = Downsample(block_in, resamp_with_conv) |
|
curr_res = curr_res // 2 |
|
self.down.append(down) |
|
|
|
# middle |
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock(in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) |
|
self.mid.block_2 = ResnetBlock(in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
|
|
# end |
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d(block_in, |
|
2*z_channels if double_z else z_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
def forward(self, x): |
|
# timestep embedding |
|
temb = None |
|
pad = (0,1,0,1) |
|
x = torch.nn.functional.pad(x, pad, mode="constant", value=0) |
|
already_padded = True |
|
# downsampling |
|
h = self.conv_in(x) |
|
for i_level in range(self.num_resolutions): |
|
for i_block in range(self.num_res_blocks): |
|
h = self.down[i_level].block[i_block](h, temb) |
|
if len(self.down[i_level].attn) > 0: |
|
h = self.down[i_level].attn[i_block](h) |
|
if i_level != self.num_resolutions-1: |
|
h = self.down[i_level].downsample(h, already_padded) |
|
already_padded = False |
|
|
|
# middle |
|
h = self.mid.block_1(h, temb) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h, temb) |
|
|
|
# end |
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, |
|
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, |
|
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, |
|
attn_type="vanilla", **ignorekwargs): |
|
super().__init__() |
|
if use_linear_attn: attn_type = "linear" |
|
self.ch = ch |
|
self.temb_ch = 0 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
self.give_pre_end = give_pre_end |
|
self.tanh_out = tanh_out |
|
|
|
# compute in_ch_mult, block_in and curr_res at lowest res |
|
in_ch_mult = (1,)+tuple(ch_mult) |
|
block_in = ch*ch_mult[self.num_resolutions-1] |
|
curr_res = resolution // 2**(self.num_resolutions-1) |
|
self.z_shape = (1,z_channels,curr_res,curr_res) |
|
print("Working with z of shape {} = {} dimensions.".format( |
|
self.z_shape, np.prod(self.z_shape))) |
|
|
|
# z to block_in |
|
self.conv_in = torch.nn.Conv2d(z_channels, |
|
block_in, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
# middle |
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock(in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) |
|
self.mid.block_2 = ResnetBlock(in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
|
|
# upsampling |
|
self.up = nn.ModuleList() |
|
for i_level in reversed(range(self.num_resolutions)): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_out = ch*ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks+1): |
|
block.append(ResnetBlock(in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout)) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(make_attn(block_in, attn_type=attn_type)) |
|
up = nn.Module() |
|
up.block = block |
|
up.attn = attn |
|
if i_level != 0: |
|
up.upsample = Upsample(block_in, resamp_with_conv) |
|
curr_res = curr_res * 2 |
|
self.up.insert(0, up) # prepend to get consistent order |
|
|
|
# end |
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d(block_in, |
|
out_ch, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
def forward(self, z): |
|
#assert z.shape[1:] == self.z_shape[1:] |
|
self.last_z_shape = z.shape |
|
|
|
# timestep embedding |
|
temb = None |
|
|
|
# z to block_in |
|
h = self.conv_in(z) |
|
|
|
# middle |
|
h = self.mid.block_1(h, temb) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h, temb) |
|
|
|
# upsampling |
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks+1): |
|
h = self.up[i_level].block[i_block](h, temb) |
|
if len(self.up[i_level].attn) > 0: |
|
h = self.up[i_level].attn[i_block](h) |
|
if i_level != 0: |
|
h = self.up[i_level].upsample(h) |
|
|
|
# end |
|
if self.give_pre_end: |
|
return h |
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
if self.tanh_out: |
|
h = torch.tanh(h) |
|
return h |
|
|
|
|
|
class SimpleDecoder(nn.Module): |
|
def __init__(self, in_channels, out_channels, *args, **kwargs): |
|
super().__init__() |
|
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1), |
|
ResnetBlock(in_channels=in_channels, |
|
out_channels=2 * in_channels, |
|
temb_channels=0, dropout=0.0), |
|
ResnetBlock(in_channels=2 * in_channels, |
|
out_channels=4 * in_channels, |
|
temb_channels=0, dropout=0.0), |
|
ResnetBlock(in_channels=4 * in_channels, |
|
out_channels=2 * in_channels, |
|
temb_channels=0, dropout=0.0), |
|
nn.Conv2d(2*in_channels, in_channels, 1), |
|
Upsample(in_channels, with_conv=True)]) |
|
# end |
|
self.norm_out = Normalize(in_channels) |
|
self.conv_out = torch.nn.Conv2d(in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
def forward(self, x): |
|
for i, layer in enumerate(self.model): |
|
if i in [1,2,3]: |
|
x = layer(x, None) |
|
else: |
|
x = layer(x) |
|
|
|
h = self.norm_out(x) |
|
h = nonlinearity(h) |
|
x = self.conv_out(h) |
|
return x |
|
|
|
|
|
class UpsampleDecoder(nn.Module): |
|
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution, |
|
ch_mult=(2,2), dropout=0.0): |
|
super().__init__() |
|
# upsampling |
|
self.temb_ch = 0 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
block_in = in_channels |
|
curr_res = resolution // 2 ** (self.num_resolutions - 1) |
|
self.res_blocks = nn.ModuleList() |
|
self.upsample_blocks = nn.ModuleList() |
|
for i_level in range(self.num_resolutions): |
|
res_block = [] |
|
block_out = ch * ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks + 1): |
|
res_block.append(ResnetBlock(in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout)) |
|
block_in = block_out |
|
self.res_blocks.append(nn.ModuleList(res_block)) |
|
if i_level != self.num_resolutions - 1: |
|
self.upsample_blocks.append(Upsample(block_in, True)) |
|
curr_res = curr_res * 2 |
|
|
|
# end |
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d(block_in, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
def forward(self, x): |
|
# upsampling |
|
h = x |
|
for k, i_level in enumerate(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks + 1): |
|
h = self.res_blocks[i_level][i_block](h, None) |
|
if i_level != self.num_resolutions - 1: |
|
h = self.upsample_blocks[k](h) |
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
class LatentRescaler(nn.Module): |
|
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2): |
|
super().__init__() |
|
# residual block, interpolate, residual block |
|
self.factor = factor |
|
self.conv_in = nn.Conv2d(in_channels, |
|
mid_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels, |
|
out_channels=mid_channels, |
|
temb_channels=0, |
|
dropout=0.0) for _ in range(depth)]) |
|
self.attn = AttnBlock(mid_channels) |
|
self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels, |
|
out_channels=mid_channels, |
|
temb_channels=0, |
|
dropout=0.0) for _ in range(depth)]) |
|
|
|
self.conv_out = nn.Conv2d(mid_channels, |
|
out_channels, |
|
kernel_size=1, |
|
) |
|
|
|
def forward(self, x): |
|
x = self.conv_in(x) |
|
for block in self.res_block1: |
|
x = block(x, None) |
|
x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor)))) |
|
x = self.attn(x) |
|
for block in self.res_block2: |
|
x = block(x, None) |
|
x = self.conv_out(x) |
|
return x |
|
|
|
|
|
class MergedRescaleEncoder(nn.Module): |
|
def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks, |
|
attn_resolutions, dropout=0.0, resamp_with_conv=True, |
|
ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1): |
|
super().__init__() |
|
intermediate_chn = ch * ch_mult[-1] |
|
self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult, |
|
z_channels=intermediate_chn, double_z=False, resolution=resolution, |
|
attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv, |
|
out_ch=None) |
|
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn, |
|
mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth) |
|
|
|
def forward(self, x): |
|
x = self.encoder(x) |
|
x = self.rescaler(x) |
|
return x |
|
|
|
|
|
class MergedRescaleDecoder(nn.Module): |
|
def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8), |
|
dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1): |
|
super().__init__() |
|
tmp_chn = z_channels*ch_mult[-1] |
|
self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout, |
|
resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks, |
|
ch_mult=ch_mult, resolution=resolution, ch=ch) |
|
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn, |
|
out_channels=tmp_chn, depth=rescale_module_depth) |
|
|
|
def forward(self, x): |
|
x = self.rescaler(x) |
|
x = self.decoder(x) |
|
return x |
|
|
|
|
|
class Upsampler(nn.Module): |
|
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2): |
|
super().__init__() |
|
assert out_size >= in_size |
|
num_blocks = int(np.log2(out_size//in_size))+1 |
|
factor_up = 1.+ (out_size % in_size) |
|
print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}") |
|
self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels, |
|
out_channels=in_channels) |
|
self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2, |
|
attn_resolutions=[], in_channels=None, ch=in_channels, |
|
ch_mult=[ch_mult for _ in range(num_blocks)]) |
|
|
|
def forward(self, x): |
|
x = self.rescaler(x) |
|
x = self.decoder(x) |
|
return x |
|
|
|
|
|
class Resize(nn.Module): |
|
def __init__(self, in_channels=None, learned=False, mode="bilinear"): |
|
super().__init__() |
|
self.with_conv = learned |
|
self.mode = mode |
|
if self.with_conv: |
|
print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode") |
|
raise NotImplementedError() |
|
assert in_channels is not None |
|
# no asymmetric padding in torch conv, must do it ourselves |
|
self.conv = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=4, |
|
stride=2, |
|
padding=1) |
|
|
|
def forward(self, x, scale_factor=1.0): |
|
if scale_factor==1.0: |
|
return x |
|
else: |
|
x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor) |
|
return x
|
|
|