You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
404 lines
14 KiB
404 lines
14 KiB
import torch |
|
from . import model_base |
|
from . import utils |
|
|
|
from . import sd1_clip |
|
from . import sd2_clip |
|
from . import sdxl_clip |
|
|
|
from . import supported_models_base |
|
from . import latent_formats |
|
|
|
from . import diffusers_convert |
|
|
|
class SD15(supported_models_base.BASE): |
|
unet_config = { |
|
"context_dim": 768, |
|
"model_channels": 320, |
|
"use_linear_in_transformer": False, |
|
"adm_in_channels": None, |
|
"use_temporal_attention": False, |
|
} |
|
|
|
unet_extra_config = { |
|
"num_heads": 8, |
|
"num_head_channels": -1, |
|
} |
|
|
|
latent_format = latent_formats.SD15 |
|
|
|
def process_clip_state_dict(self, state_dict): |
|
k = list(state_dict.keys()) |
|
for x in k: |
|
if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."): |
|
y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.") |
|
state_dict[y] = state_dict.pop(x) |
|
|
|
if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in state_dict: |
|
ids = state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] |
|
if ids.dtype == torch.float32: |
|
state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round() |
|
|
|
replace_prefix = {} |
|
replace_prefix["cond_stage_model."] = "clip_l." |
|
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True) |
|
return state_dict |
|
|
|
def process_clip_state_dict_for_saving(self, state_dict): |
|
replace_prefix = {"clip_l.": "cond_stage_model."} |
|
return utils.state_dict_prefix_replace(state_dict, replace_prefix) |
|
|
|
def clip_target(self): |
|
return supported_models_base.ClipTarget(sd1_clip.SD1Tokenizer, sd1_clip.SD1ClipModel) |
|
|
|
class SD20(supported_models_base.BASE): |
|
unet_config = { |
|
"context_dim": 1024, |
|
"model_channels": 320, |
|
"use_linear_in_transformer": True, |
|
"adm_in_channels": None, |
|
"use_temporal_attention": False, |
|
} |
|
|
|
latent_format = latent_formats.SD15 |
|
|
|
def model_type(self, state_dict, prefix=""): |
|
if self.unet_config["in_channels"] == 4: #SD2.0 inpainting models are not v prediction |
|
k = "{}output_blocks.11.1.transformer_blocks.0.norm1.bias".format(prefix) |
|
out = state_dict[k] |
|
if torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out. |
|
return model_base.ModelType.V_PREDICTION |
|
return model_base.ModelType.EPS |
|
|
|
def process_clip_state_dict(self, state_dict): |
|
replace_prefix = {} |
|
replace_prefix["conditioner.embedders.0.model."] = "clip_h." #SD2 in sgm format |
|
replace_prefix["cond_stage_model.model."] = "clip_h." |
|
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True) |
|
state_dict = utils.clip_text_transformers_convert(state_dict, "clip_h.", "clip_h.transformer.") |
|
return state_dict |
|
|
|
def process_clip_state_dict_for_saving(self, state_dict): |
|
replace_prefix = {} |
|
replace_prefix["clip_h"] = "cond_stage_model.model" |
|
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix) |
|
state_dict = diffusers_convert.convert_text_enc_state_dict_v20(state_dict) |
|
return state_dict |
|
|
|
def clip_target(self): |
|
return supported_models_base.ClipTarget(sd2_clip.SD2Tokenizer, sd2_clip.SD2ClipModel) |
|
|
|
class SD21UnclipL(SD20): |
|
unet_config = { |
|
"context_dim": 1024, |
|
"model_channels": 320, |
|
"use_linear_in_transformer": True, |
|
"adm_in_channels": 1536, |
|
"use_temporal_attention": False, |
|
} |
|
|
|
clip_vision_prefix = "embedder.model.visual." |
|
noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 768} |
|
|
|
|
|
class SD21UnclipH(SD20): |
|
unet_config = { |
|
"context_dim": 1024, |
|
"model_channels": 320, |
|
"use_linear_in_transformer": True, |
|
"adm_in_channels": 2048, |
|
"use_temporal_attention": False, |
|
} |
|
|
|
clip_vision_prefix = "embedder.model.visual." |
|
noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1024} |
|
|
|
class SDXLRefiner(supported_models_base.BASE): |
|
unet_config = { |
|
"model_channels": 384, |
|
"use_linear_in_transformer": True, |
|
"context_dim": 1280, |
|
"adm_in_channels": 2560, |
|
"transformer_depth": [0, 0, 4, 4, 4, 4, 0, 0], |
|
"use_temporal_attention": False, |
|
} |
|
|
|
latent_format = latent_formats.SDXL |
|
|
|
def get_model(self, state_dict, prefix="", device=None): |
|
return model_base.SDXLRefiner(self, device=device) |
|
|
|
def process_clip_state_dict(self, state_dict): |
|
keys_to_replace = {} |
|
replace_prefix = {} |
|
replace_prefix["conditioner.embedders.0.model."] = "clip_g." |
|
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True) |
|
|
|
state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.") |
|
state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace) |
|
return state_dict |
|
|
|
def process_clip_state_dict_for_saving(self, state_dict): |
|
replace_prefix = {} |
|
state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g") |
|
if "clip_g.transformer.text_model.embeddings.position_ids" in state_dict_g: |
|
state_dict_g.pop("clip_g.transformer.text_model.embeddings.position_ids") |
|
replace_prefix["clip_g"] = "conditioner.embedders.0.model" |
|
state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix) |
|
return state_dict_g |
|
|
|
def clip_target(self): |
|
return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLRefinerClipModel) |
|
|
|
class SDXL(supported_models_base.BASE): |
|
unet_config = { |
|
"model_channels": 320, |
|
"use_linear_in_transformer": True, |
|
"transformer_depth": [0, 0, 2, 2, 10, 10], |
|
"context_dim": 2048, |
|
"adm_in_channels": 2816, |
|
"use_temporal_attention": False, |
|
} |
|
|
|
latent_format = latent_formats.SDXL |
|
|
|
def model_type(self, state_dict, prefix=""): |
|
if 'edm_mean' in state_dict and 'edm_std' in state_dict: #Playground V2.5 |
|
self.latent_format = latent_formats.SDXL_Playground_2_5() |
|
self.sampling_settings["sigma_data"] = 0.5 |
|
self.sampling_settings["sigma_max"] = 80.0 |
|
self.sampling_settings["sigma_min"] = 0.002 |
|
return model_base.ModelType.EDM |
|
elif "v_pred" in state_dict: |
|
return model_base.ModelType.V_PREDICTION |
|
else: |
|
return model_base.ModelType.EPS |
|
|
|
def get_model(self, state_dict, prefix="", device=None): |
|
out = model_base.SDXL(self, model_type=self.model_type(state_dict, prefix), device=device) |
|
if self.inpaint_model(): |
|
out.set_inpaint() |
|
return out |
|
|
|
def process_clip_state_dict(self, state_dict): |
|
keys_to_replace = {} |
|
replace_prefix = {} |
|
|
|
replace_prefix["conditioner.embedders.0.transformer.text_model"] = "clip_l.transformer.text_model" |
|
replace_prefix["conditioner.embedders.1.model."] = "clip_g." |
|
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True) |
|
|
|
state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace) |
|
state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.") |
|
return state_dict |
|
|
|
def process_clip_state_dict_for_saving(self, state_dict): |
|
replace_prefix = {} |
|
keys_to_replace = {} |
|
state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g") |
|
for k in state_dict: |
|
if k.startswith("clip_l"): |
|
state_dict_g[k] = state_dict[k] |
|
|
|
state_dict_g["clip_l.transformer.text_model.embeddings.position_ids"] = torch.arange(77).expand((1, -1)) |
|
pop_keys = ["clip_l.transformer.text_projection.weight", "clip_l.logit_scale"] |
|
for p in pop_keys: |
|
if p in state_dict_g: |
|
state_dict_g.pop(p) |
|
|
|
replace_prefix["clip_g"] = "conditioner.embedders.1.model" |
|
replace_prefix["clip_l"] = "conditioner.embedders.0" |
|
state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix) |
|
return state_dict_g |
|
|
|
def clip_target(self): |
|
return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel) |
|
|
|
class SSD1B(SDXL): |
|
unet_config = { |
|
"model_channels": 320, |
|
"use_linear_in_transformer": True, |
|
"transformer_depth": [0, 0, 2, 2, 4, 4], |
|
"context_dim": 2048, |
|
"adm_in_channels": 2816, |
|
"use_temporal_attention": False, |
|
} |
|
|
|
class Segmind_Vega(SDXL): |
|
unet_config = { |
|
"model_channels": 320, |
|
"use_linear_in_transformer": True, |
|
"transformer_depth": [0, 0, 1, 1, 2, 2], |
|
"context_dim": 2048, |
|
"adm_in_channels": 2816, |
|
"use_temporal_attention": False, |
|
} |
|
|
|
class KOALA_700M(SDXL): |
|
unet_config = { |
|
"model_channels": 320, |
|
"use_linear_in_transformer": True, |
|
"transformer_depth": [0, 2, 5], |
|
"context_dim": 2048, |
|
"adm_in_channels": 2816, |
|
"use_temporal_attention": False, |
|
} |
|
|
|
class KOALA_1B(SDXL): |
|
unet_config = { |
|
"model_channels": 320, |
|
"use_linear_in_transformer": True, |
|
"transformer_depth": [0, 2, 6], |
|
"context_dim": 2048, |
|
"adm_in_channels": 2816, |
|
"use_temporal_attention": False, |
|
} |
|
|
|
class SVD_img2vid(supported_models_base.BASE): |
|
unet_config = { |
|
"model_channels": 320, |
|
"in_channels": 8, |
|
"use_linear_in_transformer": True, |
|
"transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0], |
|
"context_dim": 1024, |
|
"adm_in_channels": 768, |
|
"use_temporal_attention": True, |
|
"use_temporal_resblock": True |
|
} |
|
|
|
clip_vision_prefix = "conditioner.embedders.0.open_clip.model.visual." |
|
|
|
latent_format = latent_formats.SD15 |
|
|
|
sampling_settings = {"sigma_max": 700.0, "sigma_min": 0.002} |
|
|
|
def get_model(self, state_dict, prefix="", device=None): |
|
out = model_base.SVD_img2vid(self, device=device) |
|
return out |
|
|
|
def clip_target(self): |
|
return None |
|
|
|
class Stable_Zero123(supported_models_base.BASE): |
|
unet_config = { |
|
"context_dim": 768, |
|
"model_channels": 320, |
|
"use_linear_in_transformer": False, |
|
"adm_in_channels": None, |
|
"use_temporal_attention": False, |
|
"in_channels": 8, |
|
} |
|
|
|
unet_extra_config = { |
|
"num_heads": 8, |
|
"num_head_channels": -1, |
|
} |
|
|
|
clip_vision_prefix = "cond_stage_model.model.visual." |
|
|
|
latent_format = latent_formats.SD15 |
|
|
|
def get_model(self, state_dict, prefix="", device=None): |
|
out = model_base.Stable_Zero123(self, device=device, cc_projection_weight=state_dict["cc_projection.weight"], cc_projection_bias=state_dict["cc_projection.bias"]) |
|
return out |
|
|
|
def clip_target(self): |
|
return None |
|
|
|
class SD_X4Upscaler(SD20): |
|
unet_config = { |
|
"context_dim": 1024, |
|
"model_channels": 256, |
|
'in_channels': 7, |
|
"use_linear_in_transformer": True, |
|
"adm_in_channels": None, |
|
"use_temporal_attention": False, |
|
} |
|
|
|
unet_extra_config = { |
|
"disable_self_attentions": [True, True, True, False], |
|
"num_classes": 1000, |
|
"num_heads": 8, |
|
"num_head_channels": -1, |
|
} |
|
|
|
latent_format = latent_formats.SD_X4 |
|
|
|
sampling_settings = { |
|
"linear_start": 0.0001, |
|
"linear_end": 0.02, |
|
} |
|
|
|
def get_model(self, state_dict, prefix="", device=None): |
|
out = model_base.SD_X4Upscaler(self, device=device) |
|
return out |
|
|
|
class Stable_Cascade_C(supported_models_base.BASE): |
|
unet_config = { |
|
"stable_cascade_stage": 'c', |
|
} |
|
|
|
unet_extra_config = {} |
|
|
|
latent_format = latent_formats.SC_Prior |
|
supported_inference_dtypes = [torch.bfloat16, torch.float32] |
|
|
|
sampling_settings = { |
|
"shift": 2.0, |
|
} |
|
|
|
vae_key_prefix = ["vae."] |
|
text_encoder_key_prefix = ["text_encoder."] |
|
clip_vision_prefix = "clip_l_vision." |
|
|
|
def process_unet_state_dict(self, state_dict): |
|
key_list = list(state_dict.keys()) |
|
for y in ["weight", "bias"]: |
|
suffix = "in_proj_{}".format(y) |
|
keys = filter(lambda a: a.endswith(suffix), key_list) |
|
for k_from in keys: |
|
weights = state_dict.pop(k_from) |
|
prefix = k_from[:-(len(suffix) + 1)] |
|
shape_from = weights.shape[0] // 3 |
|
for x in range(3): |
|
p = ["to_q", "to_k", "to_v"] |
|
k_to = "{}.{}.{}".format(prefix, p[x], y) |
|
state_dict[k_to] = weights[shape_from*x:shape_from*(x + 1)] |
|
return state_dict |
|
|
|
def process_clip_state_dict(self, state_dict): |
|
state_dict = utils.state_dict_prefix_replace(state_dict, {k: "" for k in self.text_encoder_key_prefix}, filter_keys=True) |
|
if "clip_g.text_projection" in state_dict: |
|
state_dict["clip_g.transformer.text_projection.weight"] = state_dict.pop("clip_g.text_projection").transpose(0, 1) |
|
return state_dict |
|
|
|
def get_model(self, state_dict, prefix="", device=None): |
|
out = model_base.StableCascade_C(self, device=device) |
|
return out |
|
|
|
def clip_target(self): |
|
return supported_models_base.ClipTarget(sdxl_clip.StableCascadeTokenizer, sdxl_clip.StableCascadeClipModel) |
|
|
|
class Stable_Cascade_B(Stable_Cascade_C): |
|
unet_config = { |
|
"stable_cascade_stage": 'b', |
|
} |
|
|
|
unet_extra_config = {} |
|
|
|
latent_format = latent_formats.SC_B |
|
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32] |
|
|
|
sampling_settings = { |
|
"shift": 1.0, |
|
} |
|
|
|
clip_vision_prefix = None |
|
|
|
def get_model(self, state_dict, prefix="", device=None): |
|
out = model_base.StableCascade_B(self, device=device) |
|
return out |
|
|
|
|
|
models = [Stable_Zero123, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B] |
|
models += [SVD_img2vid]
|
|
|