You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
939 lines
37 KiB
939 lines
37 KiB
import sys |
|
import copy |
|
import logging |
|
import threading |
|
import heapq |
|
import traceback |
|
from enum import Enum |
|
import inspect |
|
from typing import List, Literal, NamedTuple, Optional |
|
|
|
import torch |
|
import nodes |
|
|
|
import comfy.model_management |
|
import comfy.graph_utils |
|
from comfy.graph import get_input_info, ExecutionList, DynamicPrompt, ExecutionBlocker |
|
from comfy.graph_utils import is_link, GraphBuilder |
|
from comfy.caching import HierarchicalCache, LRUCache, CacheKeySetInputSignature, CacheKeySetInputSignatureWithID, CacheKeySetID |
|
from comfy.cli_args import args |
|
|
|
class ExecutionResult(Enum): |
|
SUCCESS = 0 |
|
FAILURE = 1 |
|
SLEEPING = 2 |
|
|
|
class IsChangedCache: |
|
def __init__(self, dynprompt, outputs_cache): |
|
self.dynprompt = dynprompt |
|
self.outputs_cache = outputs_cache |
|
self.is_changed = {} |
|
|
|
def get(self, node_id): |
|
if node_id not in self.is_changed: |
|
node = self.dynprompt.get_node(node_id) |
|
class_type = node["class_type"] |
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type] |
|
if hasattr(class_def, "IS_CHANGED"): |
|
if "is_changed" in node: |
|
self.is_changed[node_id] = node["is_changed"] |
|
else: |
|
input_data_all = get_input_data(node["inputs"], class_def, node_id, self.outputs_cache) |
|
try: |
|
is_changed = map_node_over_list(class_def, input_data_all, "IS_CHANGED") |
|
node["is_changed"] = [None if isinstance(x, ExecutionBlocker) else x for x in is_changed] |
|
self.is_changed[node_id] = node["is_changed"] |
|
except: |
|
node["is_changed"] = float("NaN") |
|
self.is_changed[node_id] = node["is_changed"] |
|
else: |
|
self.is_changed[node_id] = False |
|
return self.is_changed[node_id] |
|
|
|
class CacheSet: |
|
def __init__(self, lru_size=None): |
|
if lru_size is None or lru_size == 0: |
|
self.init_classic_cache() |
|
else: |
|
self.init_lru_cache(lru_size) |
|
self.all = [self.outputs, self.ui, self.objects] |
|
|
|
# Useful for those with ample RAM/VRAM -- allows experimenting without |
|
# blowing away the cache every time |
|
def init_lru_cache(self, cache_size): |
|
self.outputs = LRUCache(CacheKeySetInputSignature, max_size=cache_size) |
|
self.ui = LRUCache(CacheKeySetInputSignatureWithID, max_size=cache_size) |
|
self.objects = HierarchicalCache(CacheKeySetID) |
|
|
|
# Performs like the old cache -- dump data ASAP |
|
def init_classic_cache(self): |
|
self.outputs = HierarchicalCache(CacheKeySetInputSignature) |
|
self.ui = HierarchicalCache(CacheKeySetInputSignatureWithID) |
|
self.objects = HierarchicalCache(CacheKeySetID) |
|
|
|
def recursive_debug_dump(self): |
|
result = { |
|
"outputs": self.outputs.recursive_debug_dump(), |
|
"ui": self.ui.recursive_debug_dump(), |
|
} |
|
return result |
|
|
|
def get_input_data(inputs, class_def, unique_id, outputs=None, prompt={}, dynprompt=None, extra_data={}): |
|
valid_inputs = class_def.INPUT_TYPES() |
|
input_data_all = {} |
|
for x in inputs: |
|
input_data = inputs[x] |
|
input_type, input_category, input_info = get_input_info(class_def, x) |
|
if is_link(input_data) and (not input_info or not input_info.get("rawLink", False)): |
|
input_unique_id = input_data[0] |
|
output_index = input_data[1] |
|
if outputs is None: |
|
continue # This might be a lazily-evaluated input |
|
cached_output = outputs.get(input_unique_id) |
|
if cached_output is None: |
|
continue |
|
if output_index >= len(cached_output): |
|
continue |
|
obj = cached_output[output_index] |
|
input_data_all[x] = obj |
|
elif input_category is not None: |
|
input_data_all[x] = [input_data] |
|
|
|
if "hidden" in valid_inputs: |
|
h = valid_inputs["hidden"] |
|
for x in h: |
|
if h[x] == "PROMPT": |
|
input_data_all[x] = [prompt] |
|
if h[x] == "DYNPROMPT": |
|
input_data_all[x] = [dynprompt] |
|
if h[x] == "EXTRA_PNGINFO": |
|
if "extra_pnginfo" in extra_data: |
|
input_data_all[x] = [extra_data['extra_pnginfo']] |
|
if h[x] == "UNIQUE_ID": |
|
input_data_all[x] = [unique_id] |
|
return input_data_all |
|
|
|
def map_node_over_list(obj, input_data_all, func, allow_interrupt=False, execution_block_cb=None, pre_execute_cb=None): |
|
# check if node wants the lists |
|
input_is_list = False |
|
if hasattr(obj, "INPUT_IS_LIST"): |
|
input_is_list = obj.INPUT_IS_LIST |
|
|
|
if len(input_data_all) == 0: |
|
max_len_input = 0 |
|
else: |
|
max_len_input = max([len(x) for x in input_data_all.values()]) |
|
|
|
# get a slice of inputs, repeat last input when list isn't long enough |
|
def slice_dict(d, i): |
|
d_new = dict() |
|
for k,v in d.items(): |
|
d_new[k] = v[i if len(v) > i else -1] |
|
return d_new |
|
|
|
results = [] |
|
if input_is_list: |
|
if allow_interrupt: |
|
nodes.before_node_execution() |
|
execution_block = None |
|
for k, v in input_data_all.items(): |
|
for input in v: |
|
if isinstance(v, ExecutionBlocker): |
|
execution_block = execution_block_cb(v) if execution_block_cb is not None else v |
|
break |
|
|
|
if execution_block is None: |
|
if pre_execute_cb is not None: |
|
pre_execute_cb(0) |
|
results.append(getattr(obj, func)(**input_data_all)) |
|
else: |
|
results.append(execution_block) |
|
elif max_len_input == 0: |
|
if allow_interrupt: |
|
nodes.before_node_execution() |
|
results.append(getattr(obj, func)()) |
|
else: |
|
for i in range(max_len_input): |
|
if allow_interrupt: |
|
nodes.before_node_execution() |
|
input_dict = slice_dict(input_data_all, i) |
|
execution_block = None |
|
for k, v in input_dict.items(): |
|
if isinstance(v, ExecutionBlocker): |
|
execution_block = execution_block_cb(v) if execution_block_cb is not None else v |
|
break |
|
if execution_block is None: |
|
if pre_execute_cb is not None: |
|
pre_execute_cb(i) |
|
results.append(getattr(obj, func)(**input_dict)) |
|
else: |
|
results.append(execution_block) |
|
return results |
|
|
|
def merge_result_data(results, obj): |
|
# check which outputs need concatenating |
|
output = [] |
|
output_is_list = [False] * len(results[0]) |
|
if hasattr(obj, "OUTPUT_IS_LIST"): |
|
output_is_list = obj.OUTPUT_IS_LIST |
|
|
|
# merge node execution results |
|
for i, is_list in zip(range(len(results[0])), output_is_list): |
|
if is_list: |
|
output.append([x for o in results for x in o[i]]) |
|
else: |
|
output.append([o[i] for o in results]) |
|
return output |
|
|
|
def get_output_data(obj, input_data_all, execution_block_cb=None, pre_execute_cb=None): |
|
|
|
results = [] |
|
uis = [] |
|
subgraph_results = [] |
|
return_values = map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb) |
|
has_subgraph = False |
|
for i in range(len(return_values)): |
|
r = return_values[i] |
|
if isinstance(r, dict): |
|
if 'ui' in r: |
|
uis.append(r['ui']) |
|
if 'expand' in r: |
|
# Perform an expansion, but do not append results |
|
has_subgraph = True |
|
new_graph = r['expand'] |
|
result = r.get("result", None) |
|
if isinstance(result, ExecutionBlocker): |
|
result = tuple([result] * len(obj.RETURN_TYPES)) |
|
subgraph_results.append((new_graph, result)) |
|
elif 'result' in r: |
|
result = r.get("result", None) |
|
if isinstance(result, ExecutionBlocker): |
|
result = tuple([result] * len(obj.RETURN_TYPES)) |
|
results.append(result) |
|
subgraph_results.append((None, result)) |
|
else: |
|
if isinstance(r, ExecutionBlocker): |
|
r = tuple([r] * len(obj.RETURN_TYPES)) |
|
results.append(r) |
|
|
|
if has_subgraph: |
|
output = subgraph_results |
|
elif len(results) > 0: |
|
output = merge_result_data(results, obj) |
|
else: |
|
output = [] |
|
ui = dict() |
|
if len(uis) > 0: |
|
ui = {k: [y for x in uis for y in x[k]] for k in uis[0].keys()} |
|
return output, ui, has_subgraph |
|
|
|
def format_value(x): |
|
if x is None: |
|
return None |
|
elif isinstance(x, (int, float, bool, str)): |
|
return x |
|
else: |
|
return str(x) |
|
|
|
def execute(server, dynprompt, caches, current_item, extra_data, executed, prompt_id, execution_list, pending_subgraph_results): |
|
unique_id = current_item |
|
real_node_id = dynprompt.get_real_node_id(unique_id) |
|
display_node_id = dynprompt.get_display_node_id(unique_id) |
|
parent_node_id = dynprompt.get_parent_node_id(unique_id) |
|
inputs = dynprompt.get_node(unique_id)['inputs'] |
|
class_type = dynprompt.get_node(unique_id)['class_type'] |
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type] |
|
if caches.outputs.get(unique_id) is not None: |
|
if server.client_id is not None: |
|
cached_output = caches.ui.get(unique_id) or {} |
|
server.send_sync("executed", { "node": unique_id, "display_node": display_node_id, "output": cached_output.get("output",None), "prompt_id": prompt_id }, server.client_id) |
|
return (ExecutionResult.SUCCESS, None, None) |
|
|
|
input_data_all = None |
|
try: |
|
if unique_id in pending_subgraph_results: |
|
cached_results = pending_subgraph_results[unique_id] |
|
resolved_outputs = [] |
|
for is_subgraph, result in cached_results: |
|
if not is_subgraph: |
|
resolved_outputs.append(result) |
|
else: |
|
resolved_output = [] |
|
for r in result: |
|
if is_link(r): |
|
source_node, source_output = r[0], r[1] |
|
node_output = caches.outputs.get(source_node)[source_output] |
|
for o in node_output: |
|
resolved_output.append(o) |
|
|
|
else: |
|
resolved_output.append(r) |
|
resolved_outputs.append(tuple(resolved_output)) |
|
output_data = merge_result_data(resolved_outputs, class_def) |
|
output_ui = [] |
|
has_subgraph = False |
|
else: |
|
input_data_all = get_input_data(inputs, class_def, unique_id, caches.outputs, dynprompt.original_prompt, dynprompt, extra_data) |
|
if server.client_id is not None: |
|
server.last_node_id = display_node_id |
|
server.send_sync("executing", { "node": unique_id, "display_node": display_node_id, "prompt_id": prompt_id }, server.client_id) |
|
|
|
obj = caches.objects.get(unique_id) |
|
if obj is None: |
|
obj = class_def() |
|
caches.objects.set(unique_id, obj) |
|
|
|
if hasattr(obj, "check_lazy_status"): |
|
required_inputs = map_node_over_list(obj, input_data_all, "check_lazy_status", allow_interrupt=True) |
|
required_inputs = set(sum([r for r in required_inputs if isinstance(r,list)], [])) |
|
required_inputs = [x for x in required_inputs if isinstance(x,str) and x not in input_data_all] |
|
if len(required_inputs) > 0: |
|
for i in required_inputs: |
|
execution_list.make_input_strong_link(unique_id, i) |
|
return (ExecutionResult.SLEEPING, None, None) |
|
|
|
def execution_block_cb(block): |
|
if block.message is not None: |
|
mes = { |
|
"prompt_id": prompt_id, |
|
"node_id": unique_id, |
|
"node_type": class_type, |
|
"executed": list(executed), |
|
|
|
"exception_message": "Execution Blocked: %s" % block.message, |
|
"exception_type": "ExecutionBlocked", |
|
"traceback": [], |
|
"current_inputs": [], |
|
"current_outputs": [], |
|
} |
|
server.send_sync("execution_error", mes, server.client_id) |
|
return ExecutionBlocker(None) |
|
else: |
|
return block |
|
def pre_execute_cb(call_index): |
|
GraphBuilder.set_default_prefix(unique_id, call_index, 0) |
|
output_data, output_ui, has_subgraph = get_output_data(obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb) |
|
if len(output_ui) > 0: |
|
caches.ui.set(unique_id, { |
|
"meta": { |
|
"node_id": unique_id, |
|
"display_node": display_node_id, |
|
"parent_node": parent_node_id, |
|
"real_node_id": real_node_id, |
|
}, |
|
"output": output_ui |
|
}) |
|
if server.client_id is not None: |
|
server.send_sync("executed", { "node": unique_id, "display_node": display_node_id, "output": output_ui, "prompt_id": prompt_id }, server.client_id) |
|
if has_subgraph: |
|
cached_outputs = [] |
|
new_node_ids = [] |
|
new_output_ids = [] |
|
new_output_links = [] |
|
for i in range(len(output_data)): |
|
new_graph, node_outputs = output_data[i] |
|
if new_graph is None: |
|
cached_outputs.append((False, node_outputs)) |
|
else: |
|
# Check for conflicts |
|
for node_id in new_graph.keys(): |
|
if dynprompt.get_node(node_id) is not None: |
|
raise Exception("Attempt to add duplicate node %s. Ensure node ids are unique and deterministic or use graph_utils.GraphBuilder." % node_id) |
|
for node_id, node_info in new_graph.items(): |
|
new_node_ids.append(node_id) |
|
display_id = node_info.get("override_display_id", unique_id) |
|
dynprompt.add_ephemeral_node(node_id, node_info, unique_id, display_id) |
|
# Figure out if the newly created node is an output node |
|
class_type = node_info["class_type"] |
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type] |
|
if hasattr(class_def, 'OUTPUT_NODE') and class_def.OUTPUT_NODE == True: |
|
new_output_ids.append(node_id) |
|
for i in range(len(node_outputs)): |
|
if is_link(node_outputs[i]): |
|
from_node_id, from_socket = node_outputs[i][0], node_outputs[i][1] |
|
new_output_links.append((from_node_id, from_socket)) |
|
cached_outputs.append((True, node_outputs)) |
|
new_node_ids = set(new_node_ids) |
|
for cache in caches.all: |
|
cache.ensure_subcache_for(unique_id, new_node_ids).clean_unused() |
|
for node_id in new_output_ids: |
|
execution_list.add_node(node_id) |
|
for link in new_output_links: |
|
execution_list.add_strong_link(link[0], link[1], unique_id) |
|
pending_subgraph_results[unique_id] = cached_outputs |
|
return (ExecutionResult.SLEEPING, None, None) |
|
caches.outputs.set(unique_id, output_data) |
|
except comfy.model_management.InterruptProcessingException as iex: |
|
logging.info("Processing interrupted") |
|
|
|
# skip formatting inputs/outputs |
|
error_details = { |
|
"node_id": real_node_id, |
|
} |
|
|
|
return (ExecutionResult.FAILURE, error_details, iex) |
|
except Exception as ex: |
|
typ, _, tb = sys.exc_info() |
|
exception_type = full_type_name(typ) |
|
input_data_formatted = {} |
|
if input_data_all is not None: |
|
input_data_formatted = {} |
|
for name, inputs in input_data_all.items(): |
|
input_data_formatted[name] = [format_value(x) for x in inputs] |
|
|
|
logging.error("!!! Exception during processing !!!") |
|
logging.error(traceback.format_exc()) |
|
|
|
error_details = { |
|
"node_id": real_node_id, |
|
"exception_message": str(ex), |
|
"exception_type": exception_type, |
|
"traceback": traceback.format_tb(tb), |
|
"current_inputs": input_data_formatted |
|
} |
|
return (ExecutionResult.FAILURE, error_details, ex) |
|
|
|
executed.add(unique_id) |
|
|
|
return (ExecutionResult.SUCCESS, None, None) |
|
|
|
class PromptExecutor: |
|
def __init__(self, server, lru_size=None): |
|
self.lru_size = lru_size |
|
self.server = server |
|
self.reset() |
|
|
|
def reset(self): |
|
self.caches = CacheSet(self.lru_size) |
|
self.status_messages = [] |
|
self.success = True |
|
|
|
def add_message(self, event, data, broadcast: bool): |
|
self.status_messages.append((event, data)) |
|
if self.server.client_id is not None or broadcast: |
|
self.server.send_sync(event, data, self.server.client_id) |
|
|
|
def handle_execution_error(self, prompt_id, prompt, current_outputs, executed, error, ex): |
|
node_id = error["node_id"] |
|
class_type = prompt[node_id]["class_type"] |
|
|
|
# First, send back the status to the frontend depending |
|
# on the exception type |
|
if isinstance(ex, comfy.model_management.InterruptProcessingException): |
|
mes = { |
|
"prompt_id": prompt_id, |
|
"node_id": node_id, |
|
"node_type": class_type, |
|
"executed": list(executed), |
|
} |
|
self.add_message("execution_interrupted", mes, broadcast=True) |
|
else: |
|
mes = { |
|
"prompt_id": prompt_id, |
|
"node_id": node_id, |
|
"node_type": class_type, |
|
"executed": list(executed), |
|
"exception_message": error["exception_message"], |
|
"exception_type": error["exception_type"], |
|
"traceback": error["traceback"], |
|
"current_inputs": error["current_inputs"], |
|
"current_outputs": list(current_outputs), |
|
} |
|
self.add_message("execution_error", mes, broadcast=False) |
|
|
|
def execute(self, prompt, prompt_id, extra_data={}, execute_outputs=[]): |
|
nodes.interrupt_processing(False) |
|
|
|
if "client_id" in extra_data: |
|
self.server.client_id = extra_data["client_id"] |
|
else: |
|
self.server.client_id = None |
|
|
|
self.status_messages = [] |
|
self.add_message("execution_start", { "prompt_id": prompt_id}, broadcast=False) |
|
|
|
with torch.inference_mode(): |
|
dynamic_prompt = DynamicPrompt(prompt) |
|
is_changed_cache = IsChangedCache(dynamic_prompt, self.caches.outputs) |
|
for cache in self.caches.all: |
|
cache.set_prompt(dynamic_prompt, prompt.keys(), is_changed_cache) |
|
cache.clean_unused() |
|
|
|
current_outputs = self.caches.outputs.all_node_ids() |
|
|
|
comfy.model_management.cleanup_models() |
|
self.add_message("execution_cached", |
|
{ "nodes": list(current_outputs) , "prompt_id": prompt_id}, |
|
broadcast=False) |
|
pending_subgraph_results = {} |
|
executed = set() |
|
execution_list = ExecutionList(dynamic_prompt, self.caches.outputs) |
|
for node_id in list(execute_outputs): |
|
execution_list.add_node(node_id) |
|
|
|
while not execution_list.is_empty(): |
|
node_id = execution_list.stage_node_execution() |
|
result, error, ex = execute(self.server, dynamic_prompt, self.caches, node_id, extra_data, executed, prompt_id, execution_list, pending_subgraph_results) |
|
if result == ExecutionResult.FAILURE: |
|
self.handle_execution_error(prompt_id, dynamic_prompt.original_prompt, current_outputs, executed, error, ex) |
|
break |
|
elif result == ExecutionResult.SLEEPING: |
|
execution_list.unstage_node_execution() |
|
else: # result == ExecutionResult.SUCCESS: |
|
execution_list.complete_node_execution() |
|
|
|
ui_outputs = {} |
|
meta_outputs = {} |
|
for ui_info in self.caches.ui.all_active_values(): |
|
node_id = ui_info["meta"]["node_id"] |
|
ui_outputs[node_id] = ui_info["output"] |
|
meta_outputs[node_id] = ui_info["meta"] |
|
self.history_result = { |
|
"outputs": ui_outputs, |
|
"meta": meta_outputs, |
|
} |
|
self.server.last_node_id = None |
|
if comfy.model_management.DISABLE_SMART_MEMORY: |
|
comfy.model_management.unload_all_models() |
|
|
|
|
|
|
|
def validate_inputs(prompt, item, validated): |
|
unique_id = item |
|
if unique_id in validated: |
|
return validated[unique_id] |
|
|
|
inputs = prompt[unique_id]['inputs'] |
|
class_type = prompt[unique_id]['class_type'] |
|
obj_class = nodes.NODE_CLASS_MAPPINGS[class_type] |
|
|
|
class_inputs = obj_class.INPUT_TYPES() |
|
valid_inputs = set(class_inputs.get('required',{})).union(set(class_inputs.get('optional',{}))) |
|
|
|
errors = [] |
|
valid = True |
|
|
|
validate_function_inputs = [] |
|
if hasattr(obj_class, "VALIDATE_INPUTS"): |
|
validate_function_inputs = inspect.getfullargspec(obj_class.VALIDATE_INPUTS).args |
|
received_types = {} |
|
|
|
for x in valid_inputs: |
|
type_input, input_category, extra_info = get_input_info(obj_class, x) |
|
assert extra_info is not None |
|
if x not in inputs: |
|
if input_category == "required": |
|
error = { |
|
"type": "required_input_missing", |
|
"message": "Required input is missing", |
|
"details": f"{x}", |
|
"extra_info": { |
|
"input_name": x |
|
} |
|
} |
|
errors.append(error) |
|
continue |
|
|
|
val = inputs[x] |
|
info = (type_input, extra_info) |
|
if isinstance(val, list): |
|
if len(val) != 2: |
|
error = { |
|
"type": "bad_linked_input", |
|
"message": "Bad linked input, must be a length-2 list of [node_id, slot_index]", |
|
"details": f"{x}", |
|
"extra_info": { |
|
"input_name": x, |
|
"input_config": info, |
|
"received_value": val |
|
} |
|
} |
|
errors.append(error) |
|
continue |
|
|
|
o_id = val[0] |
|
o_class_type = prompt[o_id]['class_type'] |
|
r = nodes.NODE_CLASS_MAPPINGS[o_class_type].RETURN_TYPES |
|
received_type = r[val[1]] |
|
received_types[x] = received_type |
|
if 'input_types' not in validate_function_inputs and received_type != type_input: |
|
details = f"{x}, {received_type} != {type_input}" |
|
error = { |
|
"type": "return_type_mismatch", |
|
"message": "Return type mismatch between linked nodes", |
|
"details": details, |
|
"extra_info": { |
|
"input_name": x, |
|
"input_config": info, |
|
"received_type": received_type, |
|
"linked_node": val |
|
} |
|
} |
|
errors.append(error) |
|
continue |
|
try: |
|
r = validate_inputs(prompt, o_id, validated) |
|
if r[0] is False: |
|
# `r` will be set in `validated[o_id]` already |
|
valid = False |
|
continue |
|
except Exception as ex: |
|
typ, _, tb = sys.exc_info() |
|
valid = False |
|
exception_type = full_type_name(typ) |
|
reasons = [{ |
|
"type": "exception_during_inner_validation", |
|
"message": "Exception when validating inner node", |
|
"details": str(ex), |
|
"extra_info": { |
|
"input_name": x, |
|
"input_config": info, |
|
"exception_message": str(ex), |
|
"exception_type": exception_type, |
|
"traceback": traceback.format_tb(tb), |
|
"linked_node": val |
|
} |
|
}] |
|
validated[o_id] = (False, reasons, o_id) |
|
continue |
|
else: |
|
try: |
|
if type_input == "INT": |
|
val = int(val) |
|
inputs[x] = val |
|
if type_input == "FLOAT": |
|
val = float(val) |
|
inputs[x] = val |
|
if type_input == "STRING": |
|
val = str(val) |
|
inputs[x] = val |
|
if type_input == "BOOLEAN": |
|
val = bool(val) |
|
inputs[x] = val |
|
except Exception as ex: |
|
error = { |
|
"type": "invalid_input_type", |
|
"message": f"Failed to convert an input value to a {type_input} value", |
|
"details": f"{x}, {val}, {ex}", |
|
"extra_info": { |
|
"input_name": x, |
|
"input_config": info, |
|
"received_value": val, |
|
"exception_message": str(ex) |
|
} |
|
} |
|
errors.append(error) |
|
continue |
|
|
|
if x not in validate_function_inputs: |
|
if "min" in extra_info and val < extra_info["min"]: |
|
error = { |
|
"type": "value_smaller_than_min", |
|
"message": "Value {} smaller than min of {}".format(val, extra_info["min"]), |
|
"details": f"{x}", |
|
"extra_info": { |
|
"input_name": x, |
|
"input_config": info, |
|
"received_value": val, |
|
} |
|
} |
|
errors.append(error) |
|
continue |
|
if "max" in extra_info and val > extra_info["max"]: |
|
error = { |
|
"type": "value_bigger_than_max", |
|
"message": "Value {} bigger than max of {}".format(val, extra_info["max"]), |
|
"details": f"{x}", |
|
"extra_info": { |
|
"input_name": x, |
|
"input_config": info, |
|
"received_value": val, |
|
} |
|
} |
|
errors.append(error) |
|
continue |
|
|
|
if isinstance(type_input, list): |
|
if val not in type_input: |
|
input_config = info |
|
list_info = "" |
|
|
|
# Don't send back gigantic lists like if they're lots of |
|
# scanned model filepaths |
|
if len(type_input) > 20: |
|
list_info = f"(list of length {len(type_input)})" |
|
input_config = None |
|
else: |
|
list_info = str(type_input) |
|
|
|
error = { |
|
"type": "value_not_in_list", |
|
"message": "Value not in list", |
|
"details": f"{x}: '{val}' not in {list_info}", |
|
"extra_info": { |
|
"input_name": x, |
|
"input_config": input_config, |
|
"received_value": val, |
|
} |
|
} |
|
errors.append(error) |
|
continue |
|
|
|
if len(validate_function_inputs) > 0: |
|
input_data_all = get_input_data(inputs, obj_class, unique_id) |
|
input_filtered = {} |
|
for x in input_data_all: |
|
if x in validate_function_inputs: |
|
input_filtered[x] = input_data_all[x] |
|
if 'input_types' in validate_function_inputs: |
|
input_filtered['input_types'] = [received_types] |
|
|
|
#ret = obj_class.VALIDATE_INPUTS(**input_filtered) |
|
ret = map_node_over_list(obj_class, input_filtered, "VALIDATE_INPUTS") |
|
for x in input_filtered: |
|
for i, r in enumerate(ret): |
|
if r is not True and not isinstance(r, ExecutionBlocker): |
|
details = f"{x}" |
|
if r is not False: |
|
details += f" - {str(r)}" |
|
|
|
error = { |
|
"type": "custom_validation_failed", |
|
"message": "Custom validation failed for node", |
|
"details": details, |
|
"extra_info": { |
|
"input_name": x, |
|
} |
|
} |
|
errors.append(error) |
|
continue |
|
|
|
if len(errors) > 0 or valid is not True: |
|
ret = (False, errors, unique_id) |
|
else: |
|
ret = (True, [], unique_id) |
|
|
|
validated[unique_id] = ret |
|
return ret |
|
|
|
def full_type_name(klass): |
|
module = klass.__module__ |
|
if module == 'builtins': |
|
return klass.__qualname__ |
|
return module + '.' + klass.__qualname__ |
|
|
|
def validate_prompt(prompt): |
|
outputs = set() |
|
for x in prompt: |
|
class_ = nodes.NODE_CLASS_MAPPINGS[prompt[x]['class_type']] |
|
if hasattr(class_, 'OUTPUT_NODE') and class_.OUTPUT_NODE == True: |
|
outputs.add(x) |
|
|
|
if len(outputs) == 0: |
|
error = { |
|
"type": "prompt_no_outputs", |
|
"message": "Prompt has no outputs", |
|
"details": "", |
|
"extra_info": {} |
|
} |
|
return (False, error, [], []) |
|
|
|
good_outputs = set() |
|
errors = [] |
|
node_errors = {} |
|
validated = {} |
|
for o in outputs: |
|
valid = False |
|
reasons = [] |
|
try: |
|
m = validate_inputs(prompt, o, validated) |
|
valid = m[0] |
|
reasons = m[1] |
|
except Exception as ex: |
|
typ, _, tb = sys.exc_info() |
|
valid = False |
|
exception_type = full_type_name(typ) |
|
reasons = [{ |
|
"type": "exception_during_validation", |
|
"message": "Exception when validating node", |
|
"details": str(ex), |
|
"extra_info": { |
|
"exception_type": exception_type, |
|
"traceback": traceback.format_tb(tb) |
|
} |
|
}] |
|
validated[o] = (False, reasons, o) |
|
|
|
if valid is True: |
|
good_outputs.add(o) |
|
else: |
|
logging.error(f"Failed to validate prompt for output {o}:") |
|
if len(reasons) > 0: |
|
logging.error("* (prompt):") |
|
for reason in reasons: |
|
logging.error(f" - {reason['message']}: {reason['details']}") |
|
errors += [(o, reasons)] |
|
for node_id, result in validated.items(): |
|
valid = result[0] |
|
reasons = result[1] |
|
# If a node upstream has errors, the nodes downstream will also |
|
# be reported as invalid, but there will be no errors attached. |
|
# So don't return those nodes as having errors in the response. |
|
if valid is not True and len(reasons) > 0: |
|
if node_id not in node_errors: |
|
class_type = prompt[node_id]['class_type'] |
|
node_errors[node_id] = { |
|
"errors": reasons, |
|
"dependent_outputs": [], |
|
"class_type": class_type |
|
} |
|
logging.error(f"* {class_type} {node_id}:") |
|
for reason in reasons: |
|
logging.error(f" - {reason['message']}: {reason['details']}") |
|
node_errors[node_id]["dependent_outputs"].append(o) |
|
logging.error("Output will be ignored") |
|
|
|
if len(good_outputs) == 0: |
|
errors_list = [] |
|
for o, errors in errors: |
|
for error in errors: |
|
errors_list.append(f"{error['message']}: {error['details']}") |
|
errors_list = "\n".join(errors_list) |
|
|
|
error = { |
|
"type": "prompt_outputs_failed_validation", |
|
"message": "Prompt outputs failed validation", |
|
"details": errors_list, |
|
"extra_info": {} |
|
} |
|
|
|
return (False, error, list(good_outputs), node_errors) |
|
|
|
return (True, None, list(good_outputs), node_errors) |
|
|
|
MAXIMUM_HISTORY_SIZE = 10000 |
|
|
|
class PromptQueue: |
|
def __init__(self, server): |
|
self.server = server |
|
self.mutex = threading.RLock() |
|
self.not_empty = threading.Condition(self.mutex) |
|
self.task_counter = 0 |
|
self.queue = [] |
|
self.currently_running = {} |
|
self.history = {} |
|
self.flags = {} |
|
server.prompt_queue = self |
|
|
|
def put(self, item): |
|
with self.mutex: |
|
heapq.heappush(self.queue, item) |
|
self.server.queue_updated() |
|
self.not_empty.notify() |
|
|
|
def get(self, timeout=None): |
|
with self.not_empty: |
|
while len(self.queue) == 0: |
|
self.not_empty.wait(timeout=timeout) |
|
if timeout is not None and len(self.queue) == 0: |
|
return None |
|
item = heapq.heappop(self.queue) |
|
i = self.task_counter |
|
self.currently_running[i] = copy.deepcopy(item) |
|
self.task_counter += 1 |
|
self.server.queue_updated() |
|
return (item, i) |
|
|
|
class ExecutionStatus(NamedTuple): |
|
status_str: Literal['success', 'error'] |
|
completed: bool |
|
messages: List[str] |
|
|
|
def task_done(self, item_id, history_result, |
|
status: Optional['PromptQueue.ExecutionStatus']): |
|
with self.mutex: |
|
prompt = self.currently_running.pop(item_id) |
|
if len(self.history) > MAXIMUM_HISTORY_SIZE: |
|
self.history.pop(next(iter(self.history))) |
|
|
|
status_dict: Optional[dict] = None |
|
if status is not None: |
|
status_dict = copy.deepcopy(status._asdict()) |
|
|
|
self.history[prompt[1]] = { |
|
"prompt": prompt, |
|
"outputs": {}, |
|
'status': status_dict, |
|
} |
|
self.history[prompt[1]].update(history_result) |
|
self.server.queue_updated() |
|
|
|
def get_current_queue(self): |
|
with self.mutex: |
|
out = [] |
|
for x in self.currently_running.values(): |
|
out += [x] |
|
return (out, copy.deepcopy(self.queue)) |
|
|
|
def get_tasks_remaining(self): |
|
with self.mutex: |
|
return len(self.queue) + len(self.currently_running) |
|
|
|
def wipe_queue(self): |
|
with self.mutex: |
|
self.queue = [] |
|
self.server.queue_updated() |
|
|
|
def delete_queue_item(self, function): |
|
with self.mutex: |
|
for x in range(len(self.queue)): |
|
if function(self.queue[x]): |
|
if len(self.queue) == 1: |
|
self.wipe_queue() |
|
else: |
|
self.queue.pop(x) |
|
heapq.heapify(self.queue) |
|
self.server.queue_updated() |
|
return True |
|
return False |
|
|
|
def get_history(self, prompt_id=None, max_items=None, offset=-1): |
|
with self.mutex: |
|
if prompt_id is None: |
|
out = {} |
|
i = 0 |
|
if offset < 0 and max_items is not None: |
|
offset = len(self.history) - max_items |
|
for k in self.history: |
|
if i >= offset: |
|
out[k] = self.history[k] |
|
if max_items is not None and len(out) >= max_items: |
|
break |
|
i += 1 |
|
return out |
|
elif prompt_id in self.history: |
|
return {prompt_id: copy.deepcopy(self.history[prompt_id])} |
|
else: |
|
return {} |
|
|
|
def wipe_history(self): |
|
with self.mutex: |
|
self.history = {} |
|
|
|
def delete_history_item(self, id_to_delete): |
|
with self.mutex: |
|
self.history.pop(id_to_delete, None) |
|
|
|
def set_flag(self, name, data): |
|
with self.mutex: |
|
self.flags[name] = data |
|
self.not_empty.notify() |
|
|
|
def get_flags(self, reset=True): |
|
with self.mutex: |
|
if reset: |
|
ret = self.flags |
|
self.flags = {} |
|
return ret |
|
else: |
|
return self.flags.copy()
|
|
|