You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
431 lines
15 KiB
431 lines
15 KiB
import os |
|
import sys |
|
import copy |
|
import json |
|
import threading |
|
import heapq |
|
import traceback |
|
import asyncio |
|
|
|
if os.name == "nt": |
|
import logging |
|
logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage()) |
|
|
|
import server |
|
|
|
if __name__ == "__main__": |
|
if '--help' in sys.argv: |
|
print("Valid Command line Arguments:") |
|
print("\t--listen\t\t\tListen on 0.0.0.0 so the UI can be accessed from other computers.") |
|
print("\t--port 8188\t\t\tSet the listen port.") |
|
print("\t--dont-upcast-attention\t\tDisable upcasting of attention \n\t\t\t\t\tcan boost speed but increase the chances of black images.\n") |
|
print("\t--use-split-cross-attention\tUse the split cross attention optimization instead of the sub-quadratic one.\n\t\t\t\t\tIgnored when xformers is used.") |
|
print() |
|
print("\t--highvram\t\t\tBy default models will be unloaded to CPU memory after being used.\n\t\t\t\t\tThis option keeps them in GPU memory.\n") |
|
print("\t--normalvram\t\t\tUsed to force normal vram use if lowvram gets automatically enabled.") |
|
print("\t--lowvram\t\t\tSplit the unet in parts to use less vram.") |
|
print("\t--novram\t\t\tWhen lowvram isn't enough.") |
|
print() |
|
exit() |
|
|
|
if '--dont-upcast-attention' in sys.argv: |
|
print("disabling upcasting of attention") |
|
os.environ['ATTN_PRECISION'] = "fp16" |
|
|
|
import torch |
|
import nodes |
|
|
|
def get_input_data(inputs, class_def, outputs={}, prompt={}, extra_data={}): |
|
valid_inputs = class_def.INPUT_TYPES() |
|
input_data_all = {} |
|
for x in inputs: |
|
input_data = inputs[x] |
|
if isinstance(input_data, list): |
|
input_unique_id = input_data[0] |
|
output_index = input_data[1] |
|
obj = outputs[input_unique_id][output_index] |
|
input_data_all[x] = obj |
|
else: |
|
if ("required" in valid_inputs and x in valid_inputs["required"]) or ("optional" in valid_inputs and x in valid_inputs["optional"]): |
|
input_data_all[x] = input_data |
|
|
|
if "hidden" in valid_inputs: |
|
h = valid_inputs["hidden"] |
|
for x in h: |
|
if h[x] == "PROMPT": |
|
input_data_all[x] = prompt |
|
if h[x] == "EXTRA_PNGINFO": |
|
if "extra_pnginfo" in extra_data: |
|
input_data_all[x] = extra_data['extra_pnginfo'] |
|
return input_data_all |
|
|
|
def recursive_execute(server, prompt, outputs, current_item, extra_data={}): |
|
unique_id = current_item |
|
inputs = prompt[unique_id]['inputs'] |
|
class_type = prompt[unique_id]['class_type'] |
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type] |
|
if unique_id in outputs: |
|
return [] |
|
|
|
executed = [] |
|
|
|
for x in inputs: |
|
input_data = inputs[x] |
|
|
|
if isinstance(input_data, list): |
|
input_unique_id = input_data[0] |
|
output_index = input_data[1] |
|
if input_unique_id not in outputs: |
|
executed += recursive_execute(server, prompt, outputs, input_unique_id, extra_data) |
|
|
|
input_data_all = get_input_data(inputs, class_def, outputs, prompt, extra_data) |
|
if server.client_id is not None: |
|
server.send_sync("executing", { "node": unique_id }, server.client_id) |
|
obj = class_def() |
|
|
|
outputs[unique_id] = getattr(obj, obj.FUNCTION)(**input_data_all) |
|
if "ui" in outputs[unique_id] and server.client_id is not None: |
|
server.send_sync("executed", { "node": unique_id, "output": outputs[unique_id]["ui"] }, server.client_id) |
|
return executed + [unique_id] |
|
|
|
def recursive_will_execute(prompt, outputs, current_item): |
|
unique_id = current_item |
|
inputs = prompt[unique_id]['inputs'] |
|
will_execute = [] |
|
if unique_id in outputs: |
|
return [] |
|
|
|
for x in inputs: |
|
input_data = inputs[x] |
|
if isinstance(input_data, list): |
|
input_unique_id = input_data[0] |
|
output_index = input_data[1] |
|
if input_unique_id not in outputs: |
|
will_execute += recursive_will_execute(prompt, outputs, input_unique_id) |
|
|
|
return will_execute + [unique_id] |
|
|
|
def recursive_output_delete_if_changed(prompt, old_prompt, outputs, current_item): |
|
unique_id = current_item |
|
inputs = prompt[unique_id]['inputs'] |
|
class_type = prompt[unique_id]['class_type'] |
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type] |
|
|
|
is_changed_old = '' |
|
is_changed = '' |
|
if hasattr(class_def, 'IS_CHANGED'): |
|
if unique_id in old_prompt and 'is_changed' in old_prompt[unique_id]: |
|
is_changed_old = old_prompt[unique_id]['is_changed'] |
|
if 'is_changed' not in prompt[unique_id]: |
|
input_data_all = get_input_data(inputs, class_def) |
|
is_changed = class_def.IS_CHANGED(**input_data_all) |
|
prompt[unique_id]['is_changed'] = is_changed |
|
else: |
|
is_changed = prompt[unique_id]['is_changed'] |
|
|
|
if unique_id not in outputs: |
|
return True |
|
|
|
to_delete = False |
|
if is_changed != is_changed_old: |
|
to_delete = True |
|
elif unique_id not in old_prompt: |
|
to_delete = True |
|
elif inputs == old_prompt[unique_id]['inputs']: |
|
for x in inputs: |
|
input_data = inputs[x] |
|
|
|
if isinstance(input_data, list): |
|
input_unique_id = input_data[0] |
|
output_index = input_data[1] |
|
if input_unique_id in outputs: |
|
to_delete = recursive_output_delete_if_changed(prompt, old_prompt, outputs, input_unique_id) |
|
else: |
|
to_delete = True |
|
if to_delete: |
|
break |
|
else: |
|
to_delete = True |
|
|
|
if to_delete: |
|
d = outputs.pop(unique_id) |
|
del d |
|
return to_delete |
|
|
|
class PromptExecutor: |
|
def __init__(self, server): |
|
self.outputs = {} |
|
self.old_prompt = {} |
|
self.server = server |
|
|
|
def execute(self, prompt, extra_data={}): |
|
if "client_id" in extra_data: |
|
self.server.client_id = extra_data["client_id"] |
|
else: |
|
self.server.client_id = None |
|
|
|
with torch.no_grad(): |
|
for x in prompt: |
|
recursive_output_delete_if_changed(prompt, self.old_prompt, self.outputs, x) |
|
|
|
current_outputs = set(self.outputs.keys()) |
|
executed = [] |
|
try: |
|
to_execute = [] |
|
for x in prompt: |
|
class_ = nodes.NODE_CLASS_MAPPINGS[prompt[x]['class_type']] |
|
if hasattr(class_, 'OUTPUT_NODE'): |
|
to_execute += [(0, x)] |
|
|
|
while len(to_execute) > 0: |
|
#always execute the output that depends on the least amount of unexecuted nodes first |
|
to_execute = sorted(list(map(lambda a: (len(recursive_will_execute(prompt, self.outputs, a[-1])), a[-1]), to_execute))) |
|
x = to_execute.pop(0)[-1] |
|
|
|
class_ = nodes.NODE_CLASS_MAPPINGS[prompt[x]['class_type']] |
|
if hasattr(class_, 'OUTPUT_NODE'): |
|
if class_.OUTPUT_NODE == True: |
|
valid = False |
|
try: |
|
m = validate_inputs(prompt, x) |
|
valid = m[0] |
|
except: |
|
valid = False |
|
if valid: |
|
executed += recursive_execute(self.server, prompt, self.outputs, x, extra_data) |
|
except Exception as e: |
|
print(traceback.format_exc()) |
|
to_delete = [] |
|
for o in self.outputs: |
|
if o not in current_outputs: |
|
to_delete += [o] |
|
if o in self.old_prompt: |
|
d = self.old_prompt.pop(o) |
|
del d |
|
for o in to_delete: |
|
d = self.outputs.pop(o) |
|
del d |
|
else: |
|
executed = set(executed) |
|
for x in executed: |
|
self.old_prompt[x] = copy.deepcopy(prompt[x]) |
|
finally: |
|
if self.server.client_id is not None: |
|
self.server.send_sync("executing", { "node": None }, self.server.client_id) |
|
|
|
torch.cuda.empty_cache() |
|
|
|
def validate_inputs(prompt, item): |
|
unique_id = item |
|
inputs = prompt[unique_id]['inputs'] |
|
class_type = prompt[unique_id]['class_type'] |
|
obj_class = nodes.NODE_CLASS_MAPPINGS[class_type] |
|
|
|
class_inputs = obj_class.INPUT_TYPES() |
|
required_inputs = class_inputs['required'] |
|
for x in required_inputs: |
|
if x not in inputs: |
|
return (False, "Required input is missing. {}, {}".format(class_type, x)) |
|
val = inputs[x] |
|
info = required_inputs[x] |
|
type_input = info[0] |
|
if isinstance(val, list): |
|
if len(val) != 2: |
|
return (False, "Bad Input. {}, {}".format(class_type, x)) |
|
o_id = val[0] |
|
o_class_type = prompt[o_id]['class_type'] |
|
r = nodes.NODE_CLASS_MAPPINGS[o_class_type].RETURN_TYPES |
|
if r[val[1]] != type_input: |
|
return (False, "Return type mismatch. {}, {}".format(class_type, x)) |
|
r = validate_inputs(prompt, o_id) |
|
if r[0] == False: |
|
return r |
|
else: |
|
if type_input == "INT": |
|
val = int(val) |
|
inputs[x] = val |
|
if type_input == "FLOAT": |
|
val = float(val) |
|
inputs[x] = val |
|
if type_input == "STRING": |
|
val = str(val) |
|
inputs[x] = val |
|
|
|
if len(info) > 1: |
|
if "min" in info[1] and val < info[1]["min"]: |
|
return (False, "Value smaller than min. {}, {}".format(class_type, x)) |
|
if "max" in info[1] and val > info[1]["max"]: |
|
return (False, "Value bigger than max. {}, {}".format(class_type, x)) |
|
|
|
if isinstance(type_input, list): |
|
if val not in type_input: |
|
return (False, "Value not in list. {}, {}: {} not in {}".format(class_type, x, val, type_input)) |
|
return (True, "") |
|
|
|
def validate_prompt(prompt): |
|
outputs = set() |
|
for x in prompt: |
|
class_ = nodes.NODE_CLASS_MAPPINGS[prompt[x]['class_type']] |
|
if hasattr(class_, 'OUTPUT_NODE') and class_.OUTPUT_NODE == True: |
|
outputs.add(x) |
|
|
|
if len(outputs) == 0: |
|
return (False, "Prompt has no outputs") |
|
|
|
good_outputs = set() |
|
errors = [] |
|
for o in outputs: |
|
valid = False |
|
reason = "" |
|
try: |
|
m = validate_inputs(prompt, o) |
|
valid = m[0] |
|
reason = m[1] |
|
except: |
|
valid = False |
|
reason = "Parsing error" |
|
|
|
if valid == True: |
|
good_outputs.add(x) |
|
else: |
|
print("Failed to validate prompt for output {} {}".format(o, reason)) |
|
print("output will be ignored") |
|
errors += [(o, reason)] |
|
|
|
if len(good_outputs) == 0: |
|
errors_list = "\n".join(map(lambda a: "{}".format(a[1]), errors)) |
|
return (False, "Prompt has no properly connected outputs\n {}".format(errors_list)) |
|
|
|
return (True, "") |
|
|
|
def prompt_worker(q, server): |
|
e = PromptExecutor(server) |
|
while True: |
|
item, item_id = q.get() |
|
e.execute(item[-2], item[-1]) |
|
q.task_done(item_id, e.outputs) |
|
|
|
class PromptQueue: |
|
def __init__(self, server): |
|
self.server = server |
|
self.mutex = threading.RLock() |
|
self.not_empty = threading.Condition(self.mutex) |
|
self.task_counter = 0 |
|
self.queue = [] |
|
self.currently_running = {} |
|
self.history = {} |
|
server.prompt_queue = self |
|
|
|
def put(self, item): |
|
with self.mutex: |
|
heapq.heappush(self.queue, item) |
|
self.server.queue_updated() |
|
self.not_empty.notify() |
|
|
|
def get(self): |
|
with self.not_empty: |
|
while len(self.queue) == 0: |
|
self.not_empty.wait() |
|
item = heapq.heappop(self.queue) |
|
i = self.task_counter |
|
self.currently_running[i] = copy.deepcopy(item) |
|
self.task_counter += 1 |
|
self.server.queue_updated() |
|
return (item, i) |
|
|
|
def task_done(self, item_id, outputs): |
|
with self.mutex: |
|
prompt = self.currently_running.pop(item_id) |
|
self.history[prompt[1]] = { "prompt": prompt, "outputs": {} } |
|
for o in outputs: |
|
if "ui" in outputs[o]: |
|
self.history[prompt[1]]["outputs"][o] = outputs[o]["ui"] |
|
self.server.queue_updated() |
|
|
|
def get_current_queue(self): |
|
with self.mutex: |
|
out = [] |
|
for x in self.currently_running.values(): |
|
out += [x] |
|
return (out, copy.deepcopy(self.queue)) |
|
|
|
def get_tasks_remaining(self): |
|
with self.mutex: |
|
return len(self.queue) + len(self.currently_running) |
|
|
|
def wipe_queue(self): |
|
with self.mutex: |
|
self.queue = [] |
|
self.server.queue_updated() |
|
|
|
def delete_queue_item(self, function): |
|
with self.mutex: |
|
for x in range(len(self.queue)): |
|
if function(self.queue[x]): |
|
if len(self.queue) == 1: |
|
self.wipe_queue() |
|
else: |
|
self.queue.pop(x) |
|
heapq.heapify(self.queue) |
|
self.server.queue_updated() |
|
return True |
|
return False |
|
|
|
def get_history(self): |
|
with self.mutex: |
|
return copy.deepcopy(self.history) |
|
|
|
def wipe_history(self): |
|
with self.mutex: |
|
self.history = {} |
|
|
|
def delete_history_item(self, id_to_delete): |
|
with self.mutex: |
|
self.history.pop(id_to_delete, None) |
|
|
|
async def run(server, address='', port=8188, verbose=True): |
|
await asyncio.gather(server.start(address, port, verbose), server.publish_loop()) |
|
|
|
def hijack_progress(server): |
|
from tqdm.auto import tqdm |
|
orig_func = getattr(tqdm, "update") |
|
def wrapped_func(*args, **kwargs): |
|
pbar = args[0] |
|
v = orig_func(*args, **kwargs) |
|
server.send_sync("progress", { "value": pbar.n, "max": pbar.total}, server.client_id) |
|
return v |
|
setattr(tqdm, "update", wrapped_func) |
|
|
|
if __name__ == "__main__": |
|
loop = asyncio.new_event_loop() |
|
asyncio.set_event_loop(loop) |
|
server = server.PromptServer(loop) |
|
q = PromptQueue(server) |
|
|
|
hijack_progress(server) |
|
|
|
threading.Thread(target=prompt_worker, daemon=True, args=(q,server,)).start() |
|
if '--listen' in sys.argv: |
|
address = '0.0.0.0' |
|
else: |
|
address = '127.0.0.1' |
|
|
|
dont_print = False |
|
if '--dont-print-server' in sys.argv: |
|
dont_print = True |
|
|
|
port = 8188 |
|
try: |
|
p_index = sys.argv.index('--port') |
|
port = int(sys.argv[p_index + 1]) |
|
except: |
|
pass |
|
|
|
if os.name == "nt": |
|
try: |
|
loop.run_until_complete(run(server, address=address, port=port, verbose=not dont_print)) |
|
except KeyboardInterrupt: |
|
pass |
|
else: |
|
loop.run_until_complete(run(server, address=address, port=port, verbose=not dont_print)) |
|
|
|
|