You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
561 lines
17 KiB
561 lines
17 KiB
import psutil |
|
from enum import Enum |
|
from comfy.cli_args import args |
|
import torch |
|
|
|
class VRAMState(Enum): |
|
DISABLED = 0 #No vram present: no need to move models to vram |
|
NO_VRAM = 1 #Very low vram: enable all the options to save vram |
|
LOW_VRAM = 2 |
|
NORMAL_VRAM = 3 |
|
HIGH_VRAM = 4 |
|
SHARED = 5 #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both. |
|
|
|
class CPUState(Enum): |
|
GPU = 0 |
|
CPU = 1 |
|
MPS = 2 |
|
|
|
# Determine VRAM State |
|
vram_state = VRAMState.NORMAL_VRAM |
|
set_vram_to = VRAMState.NORMAL_VRAM |
|
cpu_state = CPUState.GPU |
|
|
|
total_vram = 0 |
|
|
|
lowvram_available = True |
|
xpu_available = False |
|
|
|
directml_enabled = False |
|
if args.directml is not None: |
|
import torch_directml |
|
directml_enabled = True |
|
device_index = args.directml |
|
if device_index < 0: |
|
directml_device = torch_directml.device() |
|
else: |
|
directml_device = torch_directml.device(device_index) |
|
print("Using directml with device:", torch_directml.device_name(device_index)) |
|
# torch_directml.disable_tiled_resources(True) |
|
lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default. |
|
|
|
try: |
|
import intel_extension_for_pytorch as ipex |
|
if torch.xpu.is_available(): |
|
xpu_available = True |
|
except: |
|
pass |
|
|
|
try: |
|
if torch.backends.mps.is_available(): |
|
cpu_state = CPUState.MPS |
|
except: |
|
pass |
|
|
|
if args.cpu: |
|
cpu_state = CPUState.CPU |
|
|
|
def get_torch_device(): |
|
global xpu_available |
|
global directml_enabled |
|
global cpu_state |
|
if directml_enabled: |
|
global directml_device |
|
return directml_device |
|
if cpu_state == CPUState.MPS: |
|
return torch.device("mps") |
|
if cpu_state == CPUState.CPU: |
|
return torch.device("cpu") |
|
else: |
|
if xpu_available: |
|
return torch.device("xpu") |
|
else: |
|
return torch.device(torch.cuda.current_device()) |
|
|
|
def get_total_memory(dev=None, torch_total_too=False): |
|
global xpu_available |
|
global directml_enabled |
|
if dev is None: |
|
dev = get_torch_device() |
|
|
|
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): |
|
mem_total = psutil.virtual_memory().total |
|
mem_total_torch = mem_total |
|
else: |
|
if directml_enabled: |
|
mem_total = 1024 * 1024 * 1024 #TODO |
|
mem_total_torch = mem_total |
|
elif xpu_available: |
|
mem_total = torch.xpu.get_device_properties(dev).total_memory |
|
mem_total_torch = mem_total |
|
else: |
|
stats = torch.cuda.memory_stats(dev) |
|
mem_reserved = stats['reserved_bytes.all.current'] |
|
_, mem_total_cuda = torch.cuda.mem_get_info(dev) |
|
mem_total_torch = mem_reserved |
|
mem_total = mem_total_cuda |
|
|
|
if torch_total_too: |
|
return (mem_total, mem_total_torch) |
|
else: |
|
return mem_total |
|
|
|
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024) |
|
total_ram = psutil.virtual_memory().total / (1024 * 1024) |
|
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram)) |
|
if not args.normalvram and not args.cpu: |
|
if lowvram_available and total_vram <= 4096: |
|
print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram") |
|
set_vram_to = VRAMState.LOW_VRAM |
|
elif total_vram > total_ram * 1.1 and total_vram > 14336: |
|
print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram") |
|
vram_state = VRAMState.HIGH_VRAM |
|
|
|
try: |
|
OOM_EXCEPTION = torch.cuda.OutOfMemoryError |
|
except: |
|
OOM_EXCEPTION = Exception |
|
|
|
XFORMERS_VERSION = "" |
|
XFORMERS_ENABLED_VAE = True |
|
if args.disable_xformers: |
|
XFORMERS_IS_AVAILABLE = False |
|
else: |
|
try: |
|
import xformers |
|
import xformers.ops |
|
XFORMERS_IS_AVAILABLE = True |
|
try: |
|
XFORMERS_VERSION = xformers.version.__version__ |
|
print("xformers version:", XFORMERS_VERSION) |
|
if XFORMERS_VERSION.startswith("0.0.18"): |
|
print() |
|
print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.") |
|
print("Please downgrade or upgrade xformers to a different version.") |
|
print() |
|
XFORMERS_ENABLED_VAE = False |
|
except: |
|
pass |
|
except: |
|
XFORMERS_IS_AVAILABLE = False |
|
|
|
def is_nvidia(): |
|
global cpu_state |
|
if cpu_state == CPUState.GPU: |
|
if torch.version.cuda: |
|
return True |
|
|
|
ENABLE_PYTORCH_ATTENTION = args.use_pytorch_cross_attention |
|
|
|
if ENABLE_PYTORCH_ATTENTION == False and XFORMERS_IS_AVAILABLE == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False: |
|
try: |
|
if is_nvidia(): |
|
torch_version = torch.version.__version__ |
|
if int(torch_version[0]) >= 2: |
|
ENABLE_PYTORCH_ATTENTION = True |
|
except: |
|
pass |
|
|
|
if ENABLE_PYTORCH_ATTENTION: |
|
torch.backends.cuda.enable_math_sdp(True) |
|
torch.backends.cuda.enable_flash_sdp(True) |
|
torch.backends.cuda.enable_mem_efficient_sdp(True) |
|
XFORMERS_IS_AVAILABLE = False |
|
|
|
if args.lowvram: |
|
set_vram_to = VRAMState.LOW_VRAM |
|
lowvram_available = True |
|
elif args.novram: |
|
set_vram_to = VRAMState.NO_VRAM |
|
elif args.highvram or args.gpu_only: |
|
vram_state = VRAMState.HIGH_VRAM |
|
|
|
FORCE_FP32 = False |
|
FORCE_FP16 = False |
|
if args.force_fp32: |
|
print("Forcing FP32, if this improves things please report it.") |
|
FORCE_FP32 = True |
|
|
|
if args.force_fp16: |
|
print("Forcing FP16.") |
|
FORCE_FP16 = True |
|
|
|
if lowvram_available: |
|
try: |
|
import accelerate |
|
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM): |
|
vram_state = set_vram_to |
|
except Exception as e: |
|
import traceback |
|
print(traceback.format_exc()) |
|
print("ERROR: LOW VRAM MODE NEEDS accelerate.") |
|
lowvram_available = False |
|
|
|
|
|
if cpu_state != CPUState.GPU: |
|
vram_state = VRAMState.DISABLED |
|
|
|
if cpu_state == CPUState.MPS: |
|
vram_state = VRAMState.SHARED |
|
|
|
print(f"Set vram state to: {vram_state.name}") |
|
|
|
|
|
def get_torch_device_name(device): |
|
if hasattr(device, 'type'): |
|
if device.type == "cuda": |
|
return "{} {}".format(device, torch.cuda.get_device_name(device)) |
|
else: |
|
return "{}".format(device.type) |
|
else: |
|
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device)) |
|
|
|
try: |
|
print("Device:", get_torch_device_name(get_torch_device())) |
|
except: |
|
print("Could not pick default device.") |
|
|
|
|
|
current_loaded_model = None |
|
current_gpu_controlnets = [] |
|
|
|
model_accelerated = False |
|
|
|
|
|
def unload_model(): |
|
global current_loaded_model |
|
global model_accelerated |
|
global current_gpu_controlnets |
|
global vram_state |
|
|
|
if current_loaded_model is not None: |
|
if model_accelerated: |
|
accelerate.hooks.remove_hook_from_submodules(current_loaded_model.model) |
|
model_accelerated = False |
|
|
|
|
|
current_loaded_model.model.to(current_loaded_model.offload_device) |
|
current_loaded_model.model_patches_to(current_loaded_model.offload_device) |
|
current_loaded_model.unpatch_model() |
|
current_loaded_model = None |
|
|
|
if vram_state != VRAMState.HIGH_VRAM: |
|
if len(current_gpu_controlnets) > 0: |
|
for n in current_gpu_controlnets: |
|
n.cpu() |
|
current_gpu_controlnets = [] |
|
|
|
def minimum_inference_memory(): |
|
return (768 * 1024 * 1024) |
|
|
|
def load_model_gpu(model): |
|
global current_loaded_model |
|
global vram_state |
|
global model_accelerated |
|
|
|
if model is current_loaded_model: |
|
return |
|
unload_model() |
|
try: |
|
real_model = model.patch_model() |
|
except Exception as e: |
|
model.unpatch_model() |
|
raise e |
|
|
|
torch_dev = model.load_device |
|
model.model_patches_to(torch_dev) |
|
model.model_patches_to(model.model_dtype()) |
|
|
|
if is_device_cpu(torch_dev): |
|
vram_set_state = VRAMState.DISABLED |
|
else: |
|
vram_set_state = vram_state |
|
|
|
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM): |
|
model_size = model.model_size() |
|
current_free_mem = get_free_memory(torch_dev) |
|
lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 )) |
|
if model_size > (current_free_mem - minimum_inference_memory()): #only switch to lowvram if really necessary |
|
vram_set_state = VRAMState.LOW_VRAM |
|
|
|
current_loaded_model = model |
|
|
|
if vram_set_state == VRAMState.DISABLED: |
|
pass |
|
elif vram_set_state == VRAMState.NORMAL_VRAM or vram_set_state == VRAMState.HIGH_VRAM or vram_set_state == VRAMState.SHARED: |
|
model_accelerated = False |
|
real_model.to(torch_dev) |
|
else: |
|
if vram_set_state == VRAMState.NO_VRAM: |
|
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "256MiB", "cpu": "16GiB"}) |
|
elif vram_set_state == VRAMState.LOW_VRAM: |
|
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"}) |
|
|
|
accelerate.dispatch_model(real_model, device_map=device_map, main_device=torch_dev) |
|
model_accelerated = True |
|
return current_loaded_model |
|
|
|
def load_controlnet_gpu(control_models): |
|
global current_gpu_controlnets |
|
global vram_state |
|
if vram_state == VRAMState.DISABLED: |
|
return |
|
|
|
if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM: |
|
for m in control_models: |
|
if hasattr(m, 'set_lowvram'): |
|
m.set_lowvram(True) |
|
#don't load controlnets like this if low vram because they will be loaded right before running and unloaded right after |
|
return |
|
|
|
models = [] |
|
for m in control_models: |
|
models += m.get_models() |
|
|
|
for m in current_gpu_controlnets: |
|
if m not in models: |
|
m.cpu() |
|
|
|
device = get_torch_device() |
|
current_gpu_controlnets = [] |
|
for m in models: |
|
current_gpu_controlnets.append(m.to(device)) |
|
|
|
|
|
def load_if_low_vram(model): |
|
global vram_state |
|
if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM: |
|
return model.to(get_torch_device()) |
|
return model |
|
|
|
def unload_if_low_vram(model): |
|
global vram_state |
|
if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM: |
|
return model.cpu() |
|
return model |
|
|
|
def unet_offload_device(): |
|
if vram_state == VRAMState.HIGH_VRAM: |
|
return get_torch_device() |
|
else: |
|
return torch.device("cpu") |
|
|
|
def text_encoder_offload_device(): |
|
if args.gpu_only: |
|
return get_torch_device() |
|
else: |
|
return torch.device("cpu") |
|
|
|
def text_encoder_device(): |
|
if args.gpu_only: |
|
return get_torch_device() |
|
elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM: |
|
if torch.get_num_threads() < 8: #leaving the text encoder on the CPU is faster than shifting it if the CPU is fast enough. |
|
return get_torch_device() |
|
else: |
|
return torch.device("cpu") |
|
else: |
|
return torch.device("cpu") |
|
|
|
def vae_device(): |
|
return get_torch_device() |
|
|
|
def vae_offload_device(): |
|
if args.gpu_only: |
|
return get_torch_device() |
|
else: |
|
return torch.device("cpu") |
|
|
|
def get_autocast_device(dev): |
|
if hasattr(dev, 'type'): |
|
return dev.type |
|
return "cuda" |
|
|
|
|
|
def xformers_enabled(): |
|
global xpu_available |
|
global directml_enabled |
|
global cpu_state |
|
if cpu_state != CPUState.GPU: |
|
return False |
|
if xpu_available: |
|
return False |
|
if directml_enabled: |
|
return False |
|
return XFORMERS_IS_AVAILABLE |
|
|
|
|
|
def xformers_enabled_vae(): |
|
enabled = xformers_enabled() |
|
if not enabled: |
|
return False |
|
|
|
return XFORMERS_ENABLED_VAE |
|
|
|
def pytorch_attention_enabled(): |
|
global ENABLE_PYTORCH_ATTENTION |
|
return ENABLE_PYTORCH_ATTENTION |
|
|
|
def pytorch_attention_flash_attention(): |
|
global ENABLE_PYTORCH_ATTENTION |
|
if ENABLE_PYTORCH_ATTENTION: |
|
#TODO: more reliable way of checking for flash attention? |
|
if is_nvidia(): #pytorch flash attention only works on Nvidia |
|
return True |
|
return False |
|
|
|
def get_free_memory(dev=None, torch_free_too=False): |
|
global xpu_available |
|
global directml_enabled |
|
if dev is None: |
|
dev = get_torch_device() |
|
|
|
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): |
|
mem_free_total = psutil.virtual_memory().available |
|
mem_free_torch = mem_free_total |
|
else: |
|
if directml_enabled: |
|
mem_free_total = 1024 * 1024 * 1024 #TODO |
|
mem_free_torch = mem_free_total |
|
elif xpu_available: |
|
mem_free_total = torch.xpu.get_device_properties(dev).total_memory - torch.xpu.memory_allocated(dev) |
|
mem_free_torch = mem_free_total |
|
else: |
|
stats = torch.cuda.memory_stats(dev) |
|
mem_active = stats['active_bytes.all.current'] |
|
mem_reserved = stats['reserved_bytes.all.current'] |
|
mem_free_cuda, _ = torch.cuda.mem_get_info(dev) |
|
mem_free_torch = mem_reserved - mem_active |
|
mem_free_total = mem_free_cuda + mem_free_torch |
|
|
|
if torch_free_too: |
|
return (mem_free_total, mem_free_torch) |
|
else: |
|
return mem_free_total |
|
|
|
def maximum_batch_area(): |
|
global vram_state |
|
if vram_state == VRAMState.NO_VRAM: |
|
return 0 |
|
|
|
memory_free = get_free_memory() / (1024 * 1024) |
|
if xformers_enabled() or pytorch_attention_flash_attention(): |
|
#TODO: this needs to be tweaked |
|
area = 20 * memory_free |
|
else: |
|
#TODO: this formula is because AMD sucks and has memory management issues which might be fixed in the future |
|
area = ((memory_free - 1024) * 0.9) / (0.6) |
|
return int(max(area, 0)) |
|
|
|
def cpu_mode(): |
|
global cpu_state |
|
return cpu_state == CPUState.CPU |
|
|
|
def mps_mode(): |
|
global cpu_state |
|
return cpu_state == CPUState.MPS |
|
|
|
def is_device_cpu(device): |
|
if hasattr(device, 'type'): |
|
if (device.type == 'cpu'): |
|
return True |
|
return False |
|
|
|
def is_device_mps(device): |
|
if hasattr(device, 'type'): |
|
if (device.type == 'mps'): |
|
return True |
|
return False |
|
|
|
def should_use_fp16(device=None, model_params=0): |
|
global xpu_available |
|
global directml_enabled |
|
|
|
if FORCE_FP16: |
|
return True |
|
|
|
if device is not None: #TODO |
|
if is_device_cpu(device) or is_device_mps(device): |
|
return False |
|
|
|
if FORCE_FP32: |
|
return False |
|
|
|
if directml_enabled: |
|
return False |
|
|
|
if cpu_mode() or mps_mode() or xpu_available: |
|
return False #TODO ? |
|
|
|
if torch.cuda.is_bf16_supported(): |
|
return True |
|
|
|
props = torch.cuda.get_device_properties("cuda") |
|
if props.major < 6: |
|
return False |
|
|
|
fp16_works = False |
|
#FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled |
|
#when the model doesn't actually fit on the card |
|
#TODO: actually test if GP106 and others have the same type of behavior |
|
nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"] |
|
for x in nvidia_10_series: |
|
if x in props.name.lower(): |
|
fp16_works = True |
|
|
|
if fp16_works: |
|
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory()) |
|
if model_params * 4 > free_model_memory: |
|
return True |
|
|
|
if props.major < 7: |
|
return False |
|
|
|
#FP16 is just broken on these cards |
|
nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600"] |
|
for x in nvidia_16_series: |
|
if x in props.name: |
|
return False |
|
|
|
return True |
|
|
|
def soft_empty_cache(): |
|
global xpu_available |
|
global cpu_state |
|
if cpu_state == CPUState.MPS: |
|
torch.mps.empty_cache() |
|
elif xpu_available: |
|
torch.xpu.empty_cache() |
|
elif torch.cuda.is_available(): |
|
if is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda |
|
torch.cuda.empty_cache() |
|
torch.cuda.ipc_collect() |
|
|
|
#TODO: might be cleaner to put this somewhere else |
|
import threading |
|
|
|
class InterruptProcessingException(Exception): |
|
pass |
|
|
|
interrupt_processing_mutex = threading.RLock() |
|
|
|
interrupt_processing = False |
|
def interrupt_current_processing(value=True): |
|
global interrupt_processing |
|
global interrupt_processing_mutex |
|
with interrupt_processing_mutex: |
|
interrupt_processing = value |
|
|
|
def processing_interrupted(): |
|
global interrupt_processing |
|
global interrupt_processing_mutex |
|
with interrupt_processing_mutex: |
|
return interrupt_processing |
|
|
|
def throw_exception_if_processing_interrupted(): |
|
global interrupt_processing |
|
global interrupt_processing_mutex |
|
with interrupt_processing_mutex: |
|
if interrupt_processing: |
|
interrupt_processing = False |
|
raise InterruptProcessingException()
|
|
|