You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
196 lines
8.4 KiB
196 lines
8.4 KiB
import torch |
|
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel |
|
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation |
|
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule |
|
from comfy.ldm.modules.diffusionmodules.openaimodel import Timestep |
|
import numpy as np |
|
from . import utils |
|
|
|
class BaseModel(torch.nn.Module): |
|
def __init__(self, model_config, v_prediction=False): |
|
super().__init__() |
|
|
|
unet_config = model_config.unet_config |
|
self.latent_format = model_config.latent_format |
|
self.model_config = model_config |
|
self.register_schedule(given_betas=None, beta_schedule="linear", timesteps=1000, linear_start=0.00085, linear_end=0.012, cosine_s=8e-3) |
|
self.diffusion_model = UNetModel(**unet_config) |
|
self.v_prediction = v_prediction |
|
if self.v_prediction: |
|
self.parameterization = "v" |
|
else: |
|
self.parameterization = "eps" |
|
|
|
self.adm_channels = unet_config.get("adm_in_channels", None) |
|
if self.adm_channels is None: |
|
self.adm_channels = 0 |
|
print("v_prediction", v_prediction) |
|
print("adm", self.adm_channels) |
|
|
|
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, |
|
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): |
|
if given_betas is not None: |
|
betas = given_betas |
|
else: |
|
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) |
|
alphas = 1. - betas |
|
alphas_cumprod = np.cumprod(alphas, axis=0) |
|
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) |
|
|
|
timesteps, = betas.shape |
|
self.num_timesteps = int(timesteps) |
|
self.linear_start = linear_start |
|
self.linear_end = linear_end |
|
|
|
self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32)) |
|
self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32)) |
|
self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32)) |
|
|
|
def apply_model(self, x, t, c_concat=None, c_crossattn=None, c_adm=None, control=None, transformer_options={}): |
|
if c_concat is not None: |
|
xc = torch.cat([x] + c_concat, dim=1) |
|
else: |
|
xc = x |
|
context = torch.cat(c_crossattn, 1) |
|
dtype = self.get_dtype() |
|
xc = xc.to(dtype) |
|
t = t.to(dtype) |
|
context = context.to(dtype) |
|
if c_adm is not None: |
|
c_adm = c_adm.to(dtype) |
|
return self.diffusion_model(xc, t, context=context, y=c_adm, control=control, transformer_options=transformer_options).float() |
|
|
|
def get_dtype(self): |
|
return self.diffusion_model.dtype |
|
|
|
def is_adm(self): |
|
return self.adm_channels > 0 |
|
|
|
def encode_adm(self, **kwargs): |
|
return None |
|
|
|
def load_model_weights(self, sd, unet_prefix=""): |
|
to_load = {} |
|
keys = list(sd.keys()) |
|
for k in keys: |
|
if k.startswith(unet_prefix): |
|
to_load[k[len(unet_prefix):]] = sd.pop(k) |
|
|
|
m, u = self.diffusion_model.load_state_dict(to_load, strict=False) |
|
if len(m) > 0: |
|
print("unet missing:", m) |
|
|
|
if len(u) > 0: |
|
print("unet unexpected:", u) |
|
del to_load |
|
return self |
|
|
|
def process_latent_in(self, latent): |
|
return self.latent_format.process_in(latent) |
|
|
|
def process_latent_out(self, latent): |
|
return self.latent_format.process_out(latent) |
|
|
|
def state_dict_for_saving(self, clip_state_dict, vae_state_dict): |
|
clip_state_dict = self.model_config.process_clip_state_dict_for_saving(clip_state_dict) |
|
unet_state_dict = self.diffusion_model.state_dict() |
|
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict) |
|
vae_state_dict = self.model_config.process_vae_state_dict_for_saving(vae_state_dict) |
|
if self.get_dtype() == torch.float16: |
|
clip_state_dict = utils.convert_sd_to(clip_state_dict, torch.float16) |
|
vae_state_dict = utils.convert_sd_to(vae_state_dict, torch.float16) |
|
return {**unet_state_dict, **vae_state_dict, **clip_state_dict} |
|
|
|
|
|
class SD21UNCLIP(BaseModel): |
|
def __init__(self, model_config, noise_aug_config, v_prediction=True): |
|
super().__init__(model_config, v_prediction) |
|
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config) |
|
|
|
def encode_adm(self, **kwargs): |
|
unclip_conditioning = kwargs.get("unclip_conditioning", None) |
|
device = kwargs["device"] |
|
|
|
if unclip_conditioning is not None: |
|
adm_inputs = [] |
|
weights = [] |
|
noise_aug = [] |
|
for unclip_cond in unclip_conditioning: |
|
adm_cond = unclip_cond["clip_vision_output"].image_embeds |
|
weight = unclip_cond["strength"] |
|
noise_augment = unclip_cond["noise_augmentation"] |
|
noise_level = round((self.noise_augmentor.max_noise_level - 1) * noise_augment) |
|
c_adm, noise_level_emb = self.noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device)) |
|
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight |
|
weights.append(weight) |
|
noise_aug.append(noise_augment) |
|
adm_inputs.append(adm_out) |
|
|
|
if len(noise_aug) > 1: |
|
adm_out = torch.stack(adm_inputs).sum(0) |
|
#TODO: add a way to control this |
|
noise_augment = 0.05 |
|
noise_level = round((self.noise_augmentor.max_noise_level - 1) * noise_augment) |
|
c_adm, noise_level_emb = self.noise_augmentor(adm_out[:, :self.noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device)) |
|
adm_out = torch.cat((c_adm, noise_level_emb), 1) |
|
else: |
|
adm_out = torch.zeros((1, self.adm_channels)) |
|
|
|
return adm_out |
|
|
|
class SDInpaint(BaseModel): |
|
def __init__(self, model_config, v_prediction=False): |
|
super().__init__(model_config, v_prediction) |
|
self.concat_keys = ("mask", "masked_image") |
|
|
|
class SDXLRefiner(BaseModel): |
|
def __init__(self, model_config, v_prediction=False): |
|
super().__init__(model_config, v_prediction) |
|
self.embedder = Timestep(256) |
|
|
|
def encode_adm(self, **kwargs): |
|
clip_pooled = kwargs["pooled_output"] |
|
width = kwargs.get("width", 768) |
|
height = kwargs.get("height", 768) |
|
crop_w = kwargs.get("crop_w", 0) |
|
crop_h = kwargs.get("crop_h", 0) |
|
|
|
if kwargs.get("prompt_type", "") == "negative": |
|
aesthetic_score = kwargs.get("aesthetic_score", 2.5) |
|
else: |
|
aesthetic_score = kwargs.get("aesthetic_score", 6) |
|
|
|
print(clip_pooled.shape, width, height, crop_w, crop_h, aesthetic_score) |
|
out = [] |
|
out.append(self.embedder(torch.Tensor([height]))) |
|
out.append(self.embedder(torch.Tensor([width]))) |
|
out.append(self.embedder(torch.Tensor([crop_h]))) |
|
out.append(self.embedder(torch.Tensor([crop_w]))) |
|
out.append(self.embedder(torch.Tensor([aesthetic_score]))) |
|
flat = torch.flatten(torch.cat(out))[None, ] |
|
return torch.cat((clip_pooled.to(flat.device), flat), dim=1) |
|
|
|
class SDXL(BaseModel): |
|
def __init__(self, model_config, v_prediction=False): |
|
super().__init__(model_config, v_prediction) |
|
self.embedder = Timestep(256) |
|
|
|
def encode_adm(self, **kwargs): |
|
clip_pooled = kwargs["pooled_output"] |
|
width = kwargs.get("width", 768) |
|
height = kwargs.get("height", 768) |
|
crop_w = kwargs.get("crop_w", 0) |
|
crop_h = kwargs.get("crop_h", 0) |
|
target_width = kwargs.get("target_width", width) |
|
target_height = kwargs.get("target_height", height) |
|
|
|
print(clip_pooled.shape, width, height, crop_w, crop_h, target_width, target_height) |
|
out = [] |
|
out.append(self.embedder(torch.Tensor([height]))) |
|
out.append(self.embedder(torch.Tensor([width]))) |
|
out.append(self.embedder(torch.Tensor([crop_h]))) |
|
out.append(self.embedder(torch.Tensor([crop_w]))) |
|
out.append(self.embedder(torch.Tensor([target_height]))) |
|
out.append(self.embedder(torch.Tensor([target_width]))) |
|
flat = torch.flatten(torch.cat(out))[None, ] |
|
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
|
|
|