You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
582 lines
22 KiB
582 lines
22 KiB
import torch |
|
|
|
import os |
|
import sys |
|
import json |
|
import hashlib |
|
import copy |
|
|
|
from PIL import Image |
|
from PIL.PngImagePlugin import PngInfo |
|
import numpy as np |
|
|
|
sys.path.insert(0, os.path.join(sys.path[0], "comfy")) |
|
|
|
|
|
import comfy.samplers |
|
import comfy.sd |
|
import model_management |
|
|
|
supported_ckpt_extensions = ['.ckpt'] |
|
supported_pt_extensions = ['.ckpt', '.pt', '.bin'] |
|
try: |
|
import safetensors.torch |
|
supported_ckpt_extensions += ['.safetensors'] |
|
supported_pt_extensions += ['.safetensors'] |
|
except: |
|
print("Could not import safetensors, safetensors support disabled.") |
|
|
|
def recursive_search(directory): |
|
result = [] |
|
for root, subdir, file in os.walk(directory, followlinks=True): |
|
for filepath in file: |
|
#we os.path,join directory with a blank string to generate a path separator at the end. |
|
result.append(os.path.join(root, filepath).replace(os.path.join(directory,''),'')) |
|
return result |
|
|
|
def filter_files_extensions(files, extensions): |
|
return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions, files))) |
|
|
|
class CLIPTextEncode: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}} |
|
RETURN_TYPES = ("CONDITIONING",) |
|
FUNCTION = "encode" |
|
|
|
CATEGORY = "conditioning" |
|
|
|
def encode(self, clip, text): |
|
return ([[clip.encode(text), {}]], ) |
|
|
|
class ConditioningCombine: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}} |
|
RETURN_TYPES = ("CONDITIONING",) |
|
FUNCTION = "combine" |
|
|
|
CATEGORY = "conditioning" |
|
|
|
def combine(self, conditioning_1, conditioning_2): |
|
return (conditioning_1 + conditioning_2, ) |
|
|
|
class ConditioningSetArea: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"conditioning": ("CONDITIONING", ), |
|
"width": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}), |
|
"height": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}), |
|
"x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}), |
|
"y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}), |
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
}} |
|
RETURN_TYPES = ("CONDITIONING",) |
|
FUNCTION = "append" |
|
|
|
CATEGORY = "conditioning" |
|
|
|
def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0): |
|
c = copy.deepcopy(conditioning) |
|
for t in c: |
|
t[1]['area'] = (height // 8, width // 8, y // 8, x // 8) |
|
t[1]['strength'] = strength |
|
t[1]['min_sigma'] = min_sigma |
|
t[1]['max_sigma'] = max_sigma |
|
return (c, ) |
|
|
|
class VAEDecode: |
|
def __init__(self, device="cpu"): |
|
self.device = device |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}} |
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "decode" |
|
|
|
CATEGORY = "latent" |
|
|
|
def decode(self, vae, samples): |
|
return (vae.decode(samples), ) |
|
|
|
class VAEEncode: |
|
def __init__(self, device="cpu"): |
|
self.device = device |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}} |
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "encode" |
|
|
|
CATEGORY = "latent" |
|
|
|
def encode(self, vae, pixels): |
|
x = (pixels.shape[1] // 64) * 64 |
|
y = (pixels.shape[2] // 64) * 64 |
|
if pixels.shape[1] != x or pixels.shape[2] != y: |
|
pixels = pixels[:,:x,:y,:] |
|
return (vae.encode(pixels), ) |
|
|
|
class CheckpointLoader: |
|
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models") |
|
config_dir = os.path.join(models_dir, "configs") |
|
ckpt_dir = os.path.join(models_dir, "checkpoints") |
|
embedding_directory = os.path.join(models_dir, "embeddings") |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "config_name": (filter_files_extensions(recursive_search(s.config_dir), '.yaml'), ), |
|
"ckpt_name": (filter_files_extensions(recursive_search(s.ckpt_dir), supported_ckpt_extensions), )}} |
|
RETURN_TYPES = ("MODEL", "CLIP", "VAE") |
|
FUNCTION = "load_checkpoint" |
|
|
|
CATEGORY = "loaders" |
|
|
|
def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True): |
|
config_path = os.path.join(self.config_dir, config_name) |
|
ckpt_path = os.path.join(self.ckpt_dir, ckpt_name) |
|
return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=self.embedding_directory) |
|
|
|
class LoraLoader: |
|
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models") |
|
lora_dir = os.path.join(models_dir, "loras") |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model": ("MODEL",), |
|
"clip": ("CLIP", ), |
|
"lora_name": (filter_files_extensions(recursive_search(s.lora_dir), supported_pt_extensions), ), |
|
"strength_model": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"strength_clip": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
}} |
|
RETURN_TYPES = ("MODEL", "CLIP") |
|
FUNCTION = "load_lora" |
|
|
|
CATEGORY = "loaders" |
|
|
|
def load_lora(self, model, clip, lora_name, strength_model, strength_clip): |
|
lora_path = os.path.join(self.lora_dir, lora_name) |
|
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip) |
|
return (model_lora, clip_lora) |
|
|
|
class VAELoader: |
|
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models") |
|
vae_dir = os.path.join(models_dir, "vae") |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "vae_name": (filter_files_extensions(recursive_search(s.vae_dir), supported_pt_extensions), )}} |
|
RETURN_TYPES = ("VAE",) |
|
FUNCTION = "load_vae" |
|
|
|
CATEGORY = "loaders" |
|
|
|
#TODO: scale factor? |
|
def load_vae(self, vae_name): |
|
vae_path = os.path.join(self.vae_dir, vae_name) |
|
vae = comfy.sd.VAE(ckpt_path=vae_path) |
|
return (vae,) |
|
|
|
class CLIPLoader: |
|
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models") |
|
clip_dir = os.path.join(models_dir, "clip") |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "clip_name": (filter_files_extensions(recursive_search(s.clip_dir), supported_pt_extensions), ), |
|
"stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}), |
|
}} |
|
RETURN_TYPES = ("CLIP",) |
|
FUNCTION = "load_clip" |
|
|
|
CATEGORY = "loaders" |
|
|
|
def load_clip(self, clip_name, stop_at_clip_layer): |
|
clip_path = os.path.join(self.clip_dir, clip_name) |
|
clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=CheckpointLoader.embedding_directory) |
|
clip.clip_layer(stop_at_clip_layer) |
|
return (clip,) |
|
|
|
class EmptyLatentImage: |
|
def __init__(self, device="cpu"): |
|
self.device = device |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}), |
|
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}), |
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}} |
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "generate" |
|
|
|
CATEGORY = "latent" |
|
|
|
def generate(self, width, height, batch_size=1): |
|
latent = torch.zeros([batch_size, 4, height // 8, width // 8]) |
|
return (latent, ) |
|
|
|
def common_upscale(samples, width, height, upscale_method, crop): |
|
if crop == "center": |
|
old_width = samples.shape[3] |
|
old_height = samples.shape[2] |
|
old_aspect = old_width / old_height |
|
new_aspect = width / height |
|
x = 0 |
|
y = 0 |
|
if old_aspect > new_aspect: |
|
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2) |
|
elif old_aspect < new_aspect: |
|
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2) |
|
s = samples[:,:,y:old_height-y,x:old_width-x] |
|
else: |
|
s = samples |
|
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method) |
|
|
|
class LatentUpscale: |
|
upscale_methods = ["nearest-exact", "bilinear", "area"] |
|
crop_methods = ["disabled", "center"] |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,), |
|
"width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}), |
|
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}), |
|
"crop": (s.crop_methods,)}} |
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "upscale" |
|
|
|
CATEGORY = "latent" |
|
|
|
def upscale(self, samples, upscale_method, width, height, crop): |
|
s = common_upscale(samples, width // 8, height // 8, upscale_method, crop) |
|
return (s,) |
|
|
|
class LatentRotate: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "samples": ("LATENT",), |
|
"rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],), |
|
}} |
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "rotate" |
|
|
|
CATEGORY = "latent" |
|
|
|
def rotate(self, samples, rotation): |
|
rotate_by = 0 |
|
if rotation.startswith("90"): |
|
rotate_by = 1 |
|
elif rotation.startswith("180"): |
|
rotate_by = 2 |
|
elif rotation.startswith("270"): |
|
rotate_by = 3 |
|
|
|
s = torch.rot90(samples, k=rotate_by, dims=[3, 2]) |
|
return (s,) |
|
|
|
class LatentFlip: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "samples": ("LATENT",), |
|
"flip_method": (["x-axis: vertically", "y-axis: horizontally"],), |
|
}} |
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "flip" |
|
|
|
CATEGORY = "latent" |
|
|
|
def flip(self, samples, flip_method): |
|
if flip_method.startswith("x"): |
|
s = torch.flip(samples, dims=[2]) |
|
elif flip_method.startswith("y"): |
|
s = torch.flip(samples, dims=[3]) |
|
else: |
|
s = samples |
|
|
|
return (s,) |
|
|
|
class LatentComposite: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "samples_to": ("LATENT",), |
|
"samples_from": ("LATENT",), |
|
"x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}), |
|
"y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}), |
|
}} |
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "composite" |
|
|
|
CATEGORY = "latent" |
|
|
|
def composite(self, samples_to, samples_from, x, y, composite_method="normal"): |
|
x = x // 8 |
|
y = y // 8 |
|
s = samples_to.clone() |
|
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] |
|
return (s,) |
|
|
|
class LatentCrop: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "samples": ("LATENT",), |
|
"width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}), |
|
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}), |
|
"x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}), |
|
"y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}), |
|
}} |
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "crop" |
|
|
|
CATEGORY = "latent" |
|
|
|
def crop(self, samples, width, height, x, y): |
|
x = x // 8 |
|
y = y // 8 |
|
|
|
#enfonce minimum size of 64 |
|
if x > (samples.shape[3] - 8): |
|
x = samples.shape[3] - 8 |
|
if y > (samples.shape[2] - 8): |
|
y = samples.shape[2] - 8 |
|
|
|
new_height = height // 8 |
|
new_width = width // 8 |
|
to_x = new_width + x |
|
to_y = new_height + y |
|
def enforce_image_dim(d, to_d, max_d): |
|
if to_d > max_d: |
|
leftover = (to_d - max_d) % 8 |
|
to_d = max_d |
|
d -= leftover |
|
return (d, to_d) |
|
|
|
#make sure size is always multiple of 64 |
|
x, to_x = enforce_image_dim(x, to_x, samples.shape[3]) |
|
y, to_y = enforce_image_dim(y, to_y, samples.shape[2]) |
|
s = samples[:,:,y:to_y, x:to_x] |
|
return (s,) |
|
|
|
def common_ksampler(device, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False): |
|
if disable_noise: |
|
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") |
|
else: |
|
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu") |
|
|
|
real_model = None |
|
if device != "cpu": |
|
model_management.load_model_gpu(model) |
|
real_model = model.model |
|
else: |
|
#TODO: cpu support |
|
real_model = model.patch_model() |
|
noise = noise.to(device) |
|
latent_image = latent_image.to(device) |
|
|
|
positive_copy = [] |
|
negative_copy = [] |
|
|
|
for p in positive: |
|
t = p[0] |
|
if t.shape[0] < noise.shape[0]: |
|
t = torch.cat([t] * noise.shape[0]) |
|
t = t.to(device) |
|
positive_copy += [[t] + p[1:]] |
|
for n in negative: |
|
t = n[0] |
|
if t.shape[0] < noise.shape[0]: |
|
t = torch.cat([t] * noise.shape[0]) |
|
t = t.to(device) |
|
negative_copy += [[t] + n[1:]] |
|
|
|
if sampler_name in comfy.samplers.KSampler.SAMPLERS: |
|
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise) |
|
else: |
|
#other samplers |
|
pass |
|
|
|
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise) |
|
samples = samples.cpu() |
|
|
|
return (samples, ) |
|
|
|
class KSampler: |
|
def __init__(self, device="cuda"): |
|
self.device = device |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": |
|
{"model": ("MODEL",), |
|
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), |
|
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), |
|
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), |
|
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), |
|
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), |
|
"positive": ("CONDITIONING", ), |
|
"negative": ("CONDITIONING", ), |
|
"latent_image": ("LATENT", ), |
|
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
}} |
|
|
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "sample" |
|
|
|
CATEGORY = "sampling" |
|
|
|
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0): |
|
return common_ksampler(self.device, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise) |
|
|
|
class KSamplerAdvanced: |
|
def __init__(self, device="cuda"): |
|
self.device = device |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": |
|
{"model": ("MODEL",), |
|
"add_noise": (["enable", "disable"], ), |
|
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), |
|
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), |
|
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), |
|
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), |
|
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), |
|
"positive": ("CONDITIONING", ), |
|
"negative": ("CONDITIONING", ), |
|
"latent_image": ("LATENT", ), |
|
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}), |
|
"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}), |
|
"return_with_leftover_noise": (["disable", "enable"], ), |
|
}} |
|
|
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "sample" |
|
|
|
CATEGORY = "sampling" |
|
|
|
def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0): |
|
force_full_denoise = True |
|
if return_with_leftover_noise == "enable": |
|
force_full_denoise = False |
|
disable_noise = False |
|
if add_noise == "disable": |
|
disable_noise = True |
|
return common_ksampler(self.device, model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise) |
|
|
|
class SaveImage: |
|
def __init__(self): |
|
self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output") |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": |
|
{"images": ("IMAGE", ), |
|
"filename_prefix": ("STRING", {"default": "ComfyUI"})}, |
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, |
|
} |
|
|
|
RETURN_TYPES = () |
|
FUNCTION = "save_images" |
|
|
|
OUTPUT_NODE = True |
|
|
|
CATEGORY = "image" |
|
|
|
def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): |
|
def map_filename(filename): |
|
prefix_len = len(filename_prefix) |
|
prefix = filename[:prefix_len + 1] |
|
try: |
|
digits = int(filename[prefix_len + 1:].split('_')[0]) |
|
except: |
|
digits = 0 |
|
return (digits, prefix) |
|
try: |
|
counter = max(filter(lambda a: a[1][:-1] == filename_prefix and a[1][-1] == "_", map(map_filename, os.listdir(self.output_dir))))[0] + 1 |
|
except ValueError: |
|
counter = 1 |
|
except FileNotFoundError: |
|
os.mkdir(self.output_dir) |
|
counter = 1 |
|
for image in images: |
|
i = 255. * image.cpu().numpy() |
|
img = Image.fromarray(i.astype(np.uint8)) |
|
metadata = PngInfo() |
|
if prompt is not None: |
|
metadata.add_text("prompt", json.dumps(prompt)) |
|
if extra_pnginfo is not None: |
|
for x in extra_pnginfo: |
|
metadata.add_text(x, json.dumps(extra_pnginfo[x])) |
|
img.save(os.path.join(self.output_dir, f"{filename_prefix}_{counter:05}_.png"), pnginfo=metadata, optimize=True) |
|
counter += 1 |
|
|
|
class LoadImage: |
|
input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input") |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": |
|
{"image": (os.listdir(s.input_dir), )}, |
|
} |
|
|
|
CATEGORY = "image" |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "load_image" |
|
def load_image(self, image): |
|
image_path = os.path.join(self.input_dir, image) |
|
image = Image.open(image_path).convert("RGB") |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = torch.from_numpy(image[None])[None,] |
|
return image |
|
|
|
@classmethod |
|
def IS_CHANGED(s, image): |
|
image_path = os.path.join(s.input_dir, image) |
|
m = hashlib.sha256() |
|
with open(image_path, 'rb') as f: |
|
m.update(f.read()) |
|
return m.digest().hex() |
|
|
|
class ImageScale: |
|
upscale_methods = ["nearest-exact", "bilinear", "area"] |
|
crop_methods = ["disabled", "center"] |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,), |
|
"width": ("INT", {"default": 512, "min": 1, "max": 4096, "step": 1}), |
|
"height": ("INT", {"default": 512, "min": 1, "max": 4096, "step": 1}), |
|
"crop": (s.crop_methods,)}} |
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "upscale" |
|
|
|
CATEGORY = "image" |
|
|
|
def upscale(self, image, upscale_method, width, height, crop): |
|
samples = image.movedim(-1,1) |
|
s = common_upscale(samples, width, height, upscale_method, crop) |
|
s = s.movedim(1,-1) |
|
return (s,) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"KSampler": KSampler, |
|
"CheckpointLoader": CheckpointLoader, |
|
"CLIPTextEncode": CLIPTextEncode, |
|
"VAEDecode": VAEDecode, |
|
"VAEEncode": VAEEncode, |
|
"VAELoader": VAELoader, |
|
"EmptyLatentImage": EmptyLatentImage, |
|
"LatentUpscale": LatentUpscale, |
|
"SaveImage": SaveImage, |
|
"LoadImage": LoadImage, |
|
"ImageScale": ImageScale, |
|
"ConditioningCombine": ConditioningCombine, |
|
"ConditioningSetArea": ConditioningSetArea, |
|
"KSamplerAdvanced": KSamplerAdvanced, |
|
"LatentComposite": LatentComposite, |
|
"LatentRotate": LatentRotate, |
|
"LatentFlip": LatentFlip, |
|
"LatentCrop": LatentCrop, |
|
"LoraLoader": LoraLoader, |
|
"CLIPLoader": CLIPLoader, |
|
} |
|
|
|
|
|
|