You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
83 lines
3.0 KiB
83 lines
3.0 KiB
#Taken from: https://github.com/tfernd/HyperTile/ |
|
|
|
import math |
|
from einops import rearrange |
|
# Use torch rng for consistency across generations |
|
from torch import randint |
|
|
|
def random_divisor(value: int, min_value: int, /, max_options: int = 1) -> int: |
|
min_value = min(min_value, value) |
|
|
|
# All big divisors of value (inclusive) |
|
divisors = [i for i in range(min_value, value + 1) if value % i == 0] |
|
|
|
ns = [value // i for i in divisors[:max_options]] # has at least 1 element |
|
|
|
if len(ns) - 1 > 0: |
|
idx = randint(low=0, high=len(ns) - 1, size=(1,)).item() |
|
else: |
|
idx = 0 |
|
|
|
return ns[idx] |
|
|
|
class HyperTile: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model": ("MODEL",), |
|
"tile_size": ("INT", {"default": 256, "min": 1, "max": 2048}), |
|
"swap_size": ("INT", {"default": 2, "min": 1, "max": 128}), |
|
"max_depth": ("INT", {"default": 0, "min": 0, "max": 10}), |
|
"scale_depth": ("BOOLEAN", {"default": False}), |
|
}} |
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "patch" |
|
|
|
CATEGORY = "_for_testing" |
|
|
|
def patch(self, model, tile_size, swap_size, max_depth, scale_depth): |
|
model_channels = model.model.model_config.unet_config["model_channels"] |
|
|
|
latent_tile_size = max(32, tile_size) // 8 |
|
self.temp = None |
|
|
|
def hypertile_in(q, k, v, extra_options): |
|
model_chans = q.shape[-2] |
|
orig_shape = extra_options['original_shape'] |
|
apply_to = [] |
|
for i in range(max_depth + 1): |
|
apply_to.append((orig_shape[-2] / (2 ** i)) * (orig_shape[-1] / (2 ** i))) |
|
|
|
if model_chans in apply_to: |
|
shape = extra_options["original_shape"] |
|
aspect_ratio = shape[-1] / shape[-2] |
|
|
|
hw = q.size(1) |
|
h, w = round(math.sqrt(hw * aspect_ratio)), round(math.sqrt(hw / aspect_ratio)) |
|
|
|
factor = (2 ** apply_to.index(model_chans)) if scale_depth else 1 |
|
nh = random_divisor(h, latent_tile_size * factor, swap_size) |
|
nw = random_divisor(w, latent_tile_size * factor, swap_size) |
|
|
|
if nh * nw > 1: |
|
q = rearrange(q, "b (nh h nw w) c -> (b nh nw) (h w) c", h=h // nh, w=w // nw, nh=nh, nw=nw) |
|
self.temp = (nh, nw, h, w) |
|
return q, k, v |
|
|
|
return q, k, v |
|
def hypertile_out(out, extra_options): |
|
if self.temp is not None: |
|
nh, nw, h, w = self.temp |
|
self.temp = None |
|
out = rearrange(out, "(b nh nw) hw c -> b nh nw hw c", nh=nh, nw=nw) |
|
out = rearrange(out, "b nh nw (h w) c -> b (nh h nw w) c", h=h // nh, w=w // nw) |
|
return out |
|
|
|
|
|
m = model.clone() |
|
m.set_model_attn1_patch(hypertile_in) |
|
m.set_model_attn1_output_patch(hypertile_out) |
|
return (m, ) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"HyperTile": HyperTile, |
|
}
|
|
|