You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
56 lines
2.6 KiB
56 lines
2.6 KiB
import torch |
|
from nodes import MAX_RESOLUTION |
|
|
|
class CLIPTextEncodeSDXLRefiner: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"ascore": ("FLOAT", {"default": 6.0, "min": 0.0, "max": 1000.0, "step": 0.01}), |
|
"width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), |
|
"height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), |
|
"text": ("STRING", {"multiline": True}), "clip": ("CLIP", ), |
|
}} |
|
RETURN_TYPES = ("CONDITIONING",) |
|
FUNCTION = "encode" |
|
|
|
CATEGORY = "advanced/conditioning" |
|
|
|
def encode(self, clip, ascore, width, height, text): |
|
tokens = clip.tokenize(text) |
|
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True) |
|
return ([[cond, {"pooled_output": pooled, "aesthetic_score": ascore, "width": width,"height": height}]], ) |
|
|
|
class CLIPTextEncodeSDXL: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), |
|
"height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), |
|
"crop_w": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION}), |
|
"crop_h": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION}), |
|
"target_width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), |
|
"target_height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), |
|
"text_g": ("STRING", {"multiline": True, "default": "CLIP_G"}), "clip": ("CLIP", ), |
|
"text_l": ("STRING", {"multiline": True, "default": "CLIP_L"}), "clip": ("CLIP", ), |
|
}} |
|
RETURN_TYPES = ("CONDITIONING",) |
|
FUNCTION = "encode" |
|
|
|
CATEGORY = "advanced/conditioning" |
|
|
|
def encode(self, clip, width, height, crop_w, crop_h, target_width, target_height, text_g, text_l): |
|
tokens = clip.tokenize(text_g) |
|
tokens["l"] = clip.tokenize(text_l)["l"] |
|
if len(tokens["l"]) != len(tokens["g"]): |
|
empty = clip.tokenize("") |
|
while len(tokens["l"]) < len(tokens["g"]): |
|
tokens["l"] += empty["l"] |
|
while len(tokens["l"]) > len(tokens["g"]): |
|
tokens["g"] += empty["g"] |
|
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True) |
|
return ([[cond, {"pooled_output": pooled, "width": width, "height": height, "crop_w": crop_w, "crop_h": crop_h, "target_width": target_width, "target_height": target_height}]], ) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"CLIPTextEncodeSDXLRefiner": CLIPTextEncodeSDXLRefiner, |
|
"CLIPTextEncodeSDXL": CLIPTextEncodeSDXL, |
|
}
|
|
|