The most powerful and modular stable diffusion GUI, api and backend with a graph/nodes interface.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

278 lines
9.8 KiB

import torch
import os
import sys
import json
import hashlib
from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np
sys.path.append(os.path.join(sys.path[0], "comfy"))
import comfy.samplers
import comfy.sd
supported_ckpt_extensions = ['.ckpt']
try:
import safetensors.torch
supported_ckpt_extensions += ['.safetensors']
except:
print("Could not import safetensors, safetensors support disabled.")
def filter_files_extensions(files, extensions):
return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions, files)))
class CLIPTextEncode:
@classmethod
def INPUT_TYPES(s):
return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "encode"
def encode(self, clip, text):
return (clip.encode(text), )
class VAEDecode:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "decode"
def decode(self, vae, samples):
return (vae.decode(samples), )
class VAEEncode:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"
def encode(self, vae, pixels):
x = (pixels.shape[1] // 64) * 64
y = (pixels.shape[2] // 64) * 64
if pixels.shape[1] != x or pixels.shape[2] != y:
pixels = pixels[:,:x,:y,:]
return (vae.encode(pixels), )
class CheckpointLoader:
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
config_dir = os.path.join(models_dir, "configs")
ckpt_dir = os.path.join(models_dir, "checkpoints")
@classmethod
def INPUT_TYPES(s):
return {"required": { "config_name": (filter_files_extensions(os.listdir(s.config_dir), '.yaml'), ),
"ckpt_name": (filter_files_extensions(os.listdir(s.ckpt_dir), supported_ckpt_extensions), )}}
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
FUNCTION = "load_checkpoint"
def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
config_path = os.path.join(self.config_dir, config_name)
ckpt_path = os.path.join(self.ckpt_dir, ckpt_name)
return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True)
class VAELoader:
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
vae_dir = os.path.join(models_dir, "vae")
@classmethod
def INPUT_TYPES(s):
return {"required": { "vae_name": (filter_files_extensions(os.listdir(s.vae_dir), supported_ckpt_extensions), )}}
RETURN_TYPES = ("VAE",)
FUNCTION = "load_vae"
#TODO: scale factor?
def load_vae(self, vae_name):
vae_path = os.path.join(self.vae_dir, vae_name)
vae = comfy.sd.VAE(ckpt_path=vae_path)
return (vae,)
class EmptyLatentImage:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
def generate(self, width, height, batch_size=1):
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
return (latent, )
class LatentUpscale:
upscale_methods = ["nearest-exact", "bilinear", "area"]
crop_methods = ["disabled", "center"]
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
"width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
"crop": (s.crop_methods,)}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "upscale"
def upscale(self, samples, upscale_method, width, height, crop):
if crop == "center":
old_width = samples.shape[3]
old_height = samples.shape[2]
old_aspect = old_width / old_height
new_aspect = width / height
x = 0
y = 0
if old_aspect > new_aspect:
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
elif old_aspect < new_aspect:
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
s = samples[:,:,y:old_height-y,x:old_width-x]
else:
s = samples
s = torch.nn.functional.interpolate(s, size=(height // 8, width // 8), mode=upscale_method)
return (s,)
class KSampler:
def __init__(self, device="cuda"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model": ("MODEL",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"latent_image": ("LATENT", ),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "sample"
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu")
model = model.to(self.device)
noise = noise.to(self.device)
latent_image = latent_image.to(self.device)
if positive.shape[0] < noise.shape[0]:
positive = torch.cat([positive] * noise.shape[0])
if negative.shape[0] < noise.shape[0]:
negative = torch.cat([negative] * noise.shape[0])
positive = positive.to(self.device)
negative = negative.to(self.device)
if sampler_name in comfy.samplers.KSampler.SAMPLERS:
sampler = comfy.samplers.KSampler(model, steps=steps, device=self.device, sampler=sampler_name, scheduler=scheduler, denoise=denoise)
else:
#other samplers
pass
samples = sampler.sample(noise, positive, negative, cfg=cfg, latent_image=latent_image)
samples = samples.cpu()
model = model.cpu()
return (samples, )
class SaveImage:
def __init__(self):
self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")
@classmethod
def INPUT_TYPES(s):
return {"required":
{"images": ("IMAGE", ),
"filename_prefix": ("STRING", {"default": "ComfyUI"})},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ()
FUNCTION = "save_images"
OUTPUT_NODE = True
def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
def map_filename(filename):
prefix_len = len(filename_prefix)
prefix = filename[:prefix_len + 1]
try:
digits = int(filename[prefix_len + 1:].split('_')[0])
except:
digits = 0
return (digits, prefix)
try:
counter = max(filter(lambda a: a[1][:-1] == filename_prefix and a[1][-1] == "_", map(map_filename, os.listdir(self.output_dir))))[0] + 1
except ValueError:
counter = 1
for image in images:
i = 255. * image.cpu().numpy()
img = Image.fromarray(i.astype(np.uint8))
metadata = PngInfo()
if prompt is not None:
metadata.add_text("prompt", json.dumps(prompt))
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
img.save(f"output/{filename_prefix}_{counter:05}_.png", pnginfo=metadata, optimize=True)
counter += 1
class LoadImage:
input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
@classmethod
def INPUT_TYPES(s):
return {"required":
{"image": (os.listdir(s.input_dir), )},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "load_image"
def load_image(self, image):
image_path = os.path.join(self.input_dir, image)
image = Image.open(image_path).convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image[None])[None,]
return image
@classmethod
def IS_CHANGED(s, image):
image_path = os.path.join(s.input_dir, image)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
NODE_CLASS_MAPPINGS = {
"KSampler": KSampler,
"CheckpointLoader": CheckpointLoader,
"CLIPTextEncode": CLIPTextEncode,
"VAEDecode": VAEDecode,
"VAEEncode": VAEEncode,
"VAELoader": VAELoader,
"EmptyLatentImage": EmptyLatentImage,
"LatentUpscale": LatentUpscale,
"SaveImage": SaveImage,
"LoadImage": LoadImage
}