The most powerful and modular stable diffusion GUI, api and backend with a graph/nodes interface.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

200 lines
8.5 KiB

import torch
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
from comfy.ldm.modules.diffusionmodules.openaimodel import Timestep
import numpy as np
from enum import Enum
from . import utils
class ModelType(Enum):
EPS = 1
V_PREDICTION = 2
class BaseModel(torch.nn.Module):
def __init__(self, model_config, model_type=ModelType.EPS):
super().__init__()
unet_config = model_config.unet_config
self.latent_format = model_config.latent_format
self.model_config = model_config
self.register_schedule(given_betas=None, beta_schedule="linear", timesteps=1000, linear_start=0.00085, linear_end=0.012, cosine_s=8e-3)
self.diffusion_model = UNetModel(**unet_config)
self.model_type = model_type
self.adm_channels = unet_config.get("adm_in_channels", None)
if self.adm_channels is None:
self.adm_channels = 0
print("model_type", model_type.name)
print("adm", self.adm_channels)
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
if given_betas is not None:
betas = given_betas
else:
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))
def apply_model(self, x, t, c_concat=None, c_crossattn=None, c_adm=None, control=None, transformer_options={}):
if c_concat is not None:
xc = torch.cat([x] + c_concat, dim=1)
else:
xc = x
context = torch.cat(c_crossattn, 1)
dtype = self.get_dtype()
xc = xc.to(dtype)
t = t.to(dtype)
context = context.to(dtype)
if c_adm is not None:
c_adm = c_adm.to(dtype)
return self.diffusion_model(xc, t, context=context, y=c_adm, control=control, transformer_options=transformer_options).float()
def get_dtype(self):
return self.diffusion_model.dtype
def is_adm(self):
return self.adm_channels > 0
def encode_adm(self, **kwargs):
return None
def load_model_weights(self, sd, unet_prefix=""):
to_load = {}
keys = list(sd.keys())
for k in keys:
if k.startswith(unet_prefix):
to_load[k[len(unet_prefix):]] = sd.pop(k)
m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
if len(m) > 0:
print("unet missing:", m)
if len(u) > 0:
print("unet unexpected:", u)
del to_load
return self
def process_latent_in(self, latent):
return self.latent_format.process_in(latent)
def process_latent_out(self, latent):
return self.latent_format.process_out(latent)
def state_dict_for_saving(self, clip_state_dict, vae_state_dict):
clip_state_dict = self.model_config.process_clip_state_dict_for_saving(clip_state_dict)
unet_state_dict = self.diffusion_model.state_dict()
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
vae_state_dict = self.model_config.process_vae_state_dict_for_saving(vae_state_dict)
if self.get_dtype() == torch.float16:
clip_state_dict = utils.convert_sd_to(clip_state_dict, torch.float16)
vae_state_dict = utils.convert_sd_to(vae_state_dict, torch.float16)
if self.model_type == ModelType.V_PREDICTION:
unet_state_dict["v_pred"] = torch.tensor([])
return {**unet_state_dict, **vae_state_dict, **clip_state_dict}
class SD21UNCLIP(BaseModel):
def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION):
super().__init__(model_config, model_type)
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)
def encode_adm(self, **kwargs):
unclip_conditioning = kwargs.get("unclip_conditioning", None)
device = kwargs["device"]
if unclip_conditioning is not None:
adm_inputs = []
weights = []
noise_aug = []
for unclip_cond in unclip_conditioning:
adm_cond = unclip_cond["clip_vision_output"].image_embeds
weight = unclip_cond["strength"]
noise_augment = unclip_cond["noise_augmentation"]
noise_level = round((self.noise_augmentor.max_noise_level - 1) * noise_augment)
c_adm, noise_level_emb = self.noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
weights.append(weight)
noise_aug.append(noise_augment)
adm_inputs.append(adm_out)
if len(noise_aug) > 1:
adm_out = torch.stack(adm_inputs).sum(0)
#TODO: add a way to control this
noise_augment = 0.05
noise_level = round((self.noise_augmentor.max_noise_level - 1) * noise_augment)
c_adm, noise_level_emb = self.noise_augmentor(adm_out[:, :self.noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
adm_out = torch.cat((c_adm, noise_level_emb), 1)
else:
adm_out = torch.zeros((1, self.adm_channels))
return adm_out
class SDInpaint(BaseModel):
def __init__(self, model_config, model_type=ModelType.EPS):
super().__init__(model_config, model_type)
self.concat_keys = ("mask", "masked_image")
class SDXLRefiner(BaseModel):
def __init__(self, model_config, model_type=ModelType.EPS):
super().__init__(model_config, model_type)
self.embedder = Timestep(256)
def encode_adm(self, **kwargs):
clip_pooled = kwargs["pooled_output"]
width = kwargs.get("width", 768)
height = kwargs.get("height", 768)
crop_w = kwargs.get("crop_w", 0)
crop_h = kwargs.get("crop_h", 0)
if kwargs.get("prompt_type", "") == "negative":
aesthetic_score = kwargs.get("aesthetic_score", 2.5)
else:
aesthetic_score = kwargs.get("aesthetic_score", 6)
print(clip_pooled.shape, width, height, crop_w, crop_h, aesthetic_score)
out = []
out.append(self.embedder(torch.Tensor([height])))
out.append(self.embedder(torch.Tensor([width])))
out.append(self.embedder(torch.Tensor([crop_h])))
out.append(self.embedder(torch.Tensor([crop_w])))
out.append(self.embedder(torch.Tensor([aesthetic_score])))
flat = torch.flatten(torch.cat(out))[None, ]
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
class SDXL(BaseModel):
def __init__(self, model_config, model_type=ModelType.EPS):
super().__init__(model_config, model_type)
self.embedder = Timestep(256)
def encode_adm(self, **kwargs):
clip_pooled = kwargs["pooled_output"]
width = kwargs.get("width", 768)
height = kwargs.get("height", 768)
crop_w = kwargs.get("crop_w", 0)
crop_h = kwargs.get("crop_h", 0)
target_width = kwargs.get("target_width", width)
target_height = kwargs.get("target_height", height)
print(clip_pooled.shape, width, height, crop_w, crop_h, target_width, target_height)
out = []
out.append(self.embedder(torch.Tensor([height])))
out.append(self.embedder(torch.Tensor([width])))
out.append(self.embedder(torch.Tensor([crop_h])))
out.append(self.embedder(torch.Tensor([crop_w])))
out.append(self.embedder(torch.Tensor([target_height])))
out.append(self.embedder(torch.Tensor([target_width])))
flat = torch.flatten(torch.cat(out))[None, ]
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)