You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
270 lines
10 KiB
270 lines
10 KiB
import torch |
|
import copy |
|
import inspect |
|
|
|
import comfy.utils |
|
|
|
class ModelPatcher: |
|
def __init__(self, model, load_device, offload_device, size=0, current_device=None): |
|
self.size = size |
|
self.model = model |
|
self.patches = {} |
|
self.backup = {} |
|
self.model_options = {"transformer_options":{}} |
|
self.model_size() |
|
self.load_device = load_device |
|
self.offload_device = offload_device |
|
if current_device is None: |
|
self.current_device = self.offload_device |
|
else: |
|
self.current_device = current_device |
|
|
|
def model_size(self): |
|
if self.size > 0: |
|
return self.size |
|
model_sd = self.model.state_dict() |
|
size = 0 |
|
for k in model_sd: |
|
t = model_sd[k] |
|
size += t.nelement() * t.element_size() |
|
self.size = size |
|
self.model_keys = set(model_sd.keys()) |
|
return size |
|
|
|
def clone(self): |
|
n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device) |
|
n.patches = {} |
|
for k in self.patches: |
|
n.patches[k] = self.patches[k][:] |
|
|
|
n.model_options = copy.deepcopy(self.model_options) |
|
n.model_keys = self.model_keys |
|
return n |
|
|
|
def is_clone(self, other): |
|
if hasattr(other, 'model') and self.model is other.model: |
|
return True |
|
return False |
|
|
|
def set_model_sampler_cfg_function(self, sampler_cfg_function): |
|
if len(inspect.signature(sampler_cfg_function).parameters) == 3: |
|
self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way |
|
else: |
|
self.model_options["sampler_cfg_function"] = sampler_cfg_function |
|
|
|
def set_model_unet_function_wrapper(self, unet_wrapper_function): |
|
self.model_options["model_function_wrapper"] = unet_wrapper_function |
|
|
|
def set_model_patch(self, patch, name): |
|
to = self.model_options["transformer_options"] |
|
if "patches" not in to: |
|
to["patches"] = {} |
|
to["patches"][name] = to["patches"].get(name, []) + [patch] |
|
|
|
def set_model_patch_replace(self, patch, name, block_name, number): |
|
to = self.model_options["transformer_options"] |
|
if "patches_replace" not in to: |
|
to["patches_replace"] = {} |
|
if name not in to["patches_replace"]: |
|
to["patches_replace"][name] = {} |
|
to["patches_replace"][name][(block_name, number)] = patch |
|
|
|
def set_model_attn1_patch(self, patch): |
|
self.set_model_patch(patch, "attn1_patch") |
|
|
|
def set_model_attn2_patch(self, patch): |
|
self.set_model_patch(patch, "attn2_patch") |
|
|
|
def set_model_attn1_replace(self, patch, block_name, number): |
|
self.set_model_patch_replace(patch, "attn1", block_name, number) |
|
|
|
def set_model_attn2_replace(self, patch, block_name, number): |
|
self.set_model_patch_replace(patch, "attn2", block_name, number) |
|
|
|
def set_model_attn1_output_patch(self, patch): |
|
self.set_model_patch(patch, "attn1_output_patch") |
|
|
|
def set_model_attn2_output_patch(self, patch): |
|
self.set_model_patch(patch, "attn2_output_patch") |
|
|
|
def model_patches_to(self, device): |
|
to = self.model_options["transformer_options"] |
|
if "patches" in to: |
|
patches = to["patches"] |
|
for name in patches: |
|
patch_list = patches[name] |
|
for i in range(len(patch_list)): |
|
if hasattr(patch_list[i], "to"): |
|
patch_list[i] = patch_list[i].to(device) |
|
if "patches_replace" in to: |
|
patches = to["patches_replace"] |
|
for name in patches: |
|
patch_list = patches[name] |
|
for k in patch_list: |
|
if hasattr(patch_list[k], "to"): |
|
patch_list[k] = patch_list[k].to(device) |
|
|
|
def model_dtype(self): |
|
if hasattr(self.model, "get_dtype"): |
|
return self.model.get_dtype() |
|
|
|
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0): |
|
p = set() |
|
for k in patches: |
|
if k in self.model_keys: |
|
p.add(k) |
|
current_patches = self.patches.get(k, []) |
|
current_patches.append((strength_patch, patches[k], strength_model)) |
|
self.patches[k] = current_patches |
|
|
|
return list(p) |
|
|
|
def get_key_patches(self, filter_prefix=None): |
|
model_sd = self.model_state_dict() |
|
p = {} |
|
for k in model_sd: |
|
if filter_prefix is not None: |
|
if not k.startswith(filter_prefix): |
|
continue |
|
if k in self.patches: |
|
p[k] = [model_sd[k]] + self.patches[k] |
|
else: |
|
p[k] = (model_sd[k],) |
|
return p |
|
|
|
def model_state_dict(self, filter_prefix=None): |
|
sd = self.model.state_dict() |
|
keys = list(sd.keys()) |
|
if filter_prefix is not None: |
|
for k in keys: |
|
if not k.startswith(filter_prefix): |
|
sd.pop(k) |
|
return sd |
|
|
|
def patch_model(self, device_to=None): |
|
model_sd = self.model_state_dict() |
|
for key in self.patches: |
|
if key not in model_sd: |
|
print("could not patch. key doesn't exist in model:", k) |
|
continue |
|
|
|
weight = model_sd[key] |
|
|
|
if key not in self.backup: |
|
self.backup[key] = weight.to(self.offload_device) |
|
|
|
if device_to is not None: |
|
temp_weight = weight.float().to(device_to, copy=True) |
|
else: |
|
temp_weight = weight.to(torch.float32, copy=True) |
|
out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype) |
|
comfy.utils.set_attr(self.model, key, out_weight) |
|
del temp_weight |
|
|
|
if device_to is not None: |
|
self.model.to(device_to) |
|
self.current_device = device_to |
|
|
|
return self.model |
|
|
|
def calculate_weight(self, patches, weight, key): |
|
for p in patches: |
|
alpha = p[0] |
|
v = p[1] |
|
strength_model = p[2] |
|
|
|
if strength_model != 1.0: |
|
weight *= strength_model |
|
|
|
if isinstance(v, list): |
|
v = (self.calculate_weight(v[1:], v[0].clone(), key), ) |
|
|
|
if len(v) == 1: |
|
w1 = v[0] |
|
if alpha != 0.0: |
|
if w1.shape != weight.shape: |
|
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape)) |
|
else: |
|
weight += alpha * w1.type(weight.dtype).to(weight.device) |
|
elif len(v) == 4: #lora/locon |
|
mat1 = v[0].float().to(weight.device) |
|
mat2 = v[1].float().to(weight.device) |
|
if v[2] is not None: |
|
alpha *= v[2] / mat2.shape[0] |
|
if v[3] is not None: |
|
#locon mid weights, hopefully the math is fine because I didn't properly test it |
|
mat3 = v[3].float().to(weight.device) |
|
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]] |
|
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1) |
|
try: |
|
weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(weight.shape).type(weight.dtype) |
|
except Exception as e: |
|
print("ERROR", key, e) |
|
elif len(v) == 8: #lokr |
|
w1 = v[0] |
|
w2 = v[1] |
|
w1_a = v[3] |
|
w1_b = v[4] |
|
w2_a = v[5] |
|
w2_b = v[6] |
|
t2 = v[7] |
|
dim = None |
|
|
|
if w1 is None: |
|
dim = w1_b.shape[0] |
|
w1 = torch.mm(w1_a.float(), w1_b.float()) |
|
else: |
|
w1 = w1.float().to(weight.device) |
|
|
|
if w2 is None: |
|
dim = w2_b.shape[0] |
|
if t2 is None: |
|
w2 = torch.mm(w2_a.float().to(weight.device), w2_b.float().to(weight.device)) |
|
else: |
|
w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float().to(weight.device), w2_b.float().to(weight.device), w2_a.float().to(weight.device)) |
|
else: |
|
w2 = w2.float().to(weight.device) |
|
|
|
if len(w2.shape) == 4: |
|
w1 = w1.unsqueeze(2).unsqueeze(2) |
|
if v[2] is not None and dim is not None: |
|
alpha *= v[2] / dim |
|
|
|
try: |
|
weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype) |
|
except Exception as e: |
|
print("ERROR", key, e) |
|
else: #loha |
|
w1a = v[0] |
|
w1b = v[1] |
|
if v[2] is not None: |
|
alpha *= v[2] / w1b.shape[0] |
|
w2a = v[3] |
|
w2b = v[4] |
|
if v[5] is not None: #cp decomposition |
|
t1 = v[5] |
|
t2 = v[6] |
|
m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float().to(weight.device), w1b.float().to(weight.device), w1a.float().to(weight.device)) |
|
m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float().to(weight.device), w2b.float().to(weight.device), w2a.float().to(weight.device)) |
|
else: |
|
m1 = torch.mm(w1a.float().to(weight.device), w1b.float().to(weight.device)) |
|
m2 = torch.mm(w2a.float().to(weight.device), w2b.float().to(weight.device)) |
|
|
|
try: |
|
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype) |
|
except Exception as e: |
|
print("ERROR", key, e) |
|
|
|
return weight |
|
|
|
def unpatch_model(self, device_to=None): |
|
keys = list(self.backup.keys()) |
|
|
|
for k in keys: |
|
comfy.utils.set_attr(self.model, k, self.backup[k]) |
|
|
|
self.backup = {} |
|
|
|
if device_to is not None: |
|
self.model.to(device_to) |
|
self.current_device = device_to
|
|
|