The most powerful and modular stable diffusion GUI, api and backend with a graph/nodes interface.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

369 lines
13 KiB

import os
import sys
import copy
import json
import threading
import queue
import traceback
import torch
import nodes
def get_input_data(inputs, class_def, outputs={}, prompt={}, extra_data={}):
valid_inputs = class_def.INPUT_TYPES()
input_data_all = {}
for x in inputs:
input_data = inputs[x]
if isinstance(input_data, list):
input_unique_id = input_data[0]
output_index = input_data[1]
obj = outputs[input_unique_id][output_index]
input_data_all[x] = obj
else:
if ("required" in valid_inputs and x in valid_inputs["required"]) or ("optional" in valid_inputs and x in valid_inputs["optional"]):
input_data_all[x] = input_data
if "hidden" in valid_inputs:
h = valid_inputs["hidden"]
for x in h:
if h[x] == "PROMPT":
input_data_all[x] = prompt
if h[x] == "EXTRA_PNGINFO":
if "extra_pnginfo" in extra_data:
input_data_all[x] = extra_data['extra_pnginfo']
return input_data_all
def recursive_execute(prompt, outputs, current_item, extra_data={}):
unique_id = current_item
inputs = prompt[unique_id]['inputs']
class_type = prompt[unique_id]['class_type']
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
if unique_id in outputs:
return []
executed = []
for x in inputs:
input_data = inputs[x]
if isinstance(input_data, list):
input_unique_id = input_data[0]
output_index = input_data[1]
if input_unique_id not in outputs:
executed += recursive_execute(prompt, outputs, input_unique_id, extra_data)
input_data_all = get_input_data(inputs, class_def, outputs, prompt, extra_data)
obj = class_def()
outputs[unique_id] = getattr(obj, obj.FUNCTION)(**input_data_all)
return executed + [unique_id]
def recursive_will_execute(prompt, outputs, current_item):
unique_id = current_item
inputs = prompt[unique_id]['inputs']
will_execute = []
if unique_id in outputs:
return []
for x in inputs:
input_data = inputs[x]
if isinstance(input_data, list):
input_unique_id = input_data[0]
output_index = input_data[1]
if input_unique_id not in outputs:
will_execute += recursive_will_execute(prompt, outputs, input_unique_id)
return will_execute + [unique_id]
def recursive_output_delete_if_changed(prompt, old_prompt, outputs, current_item):
unique_id = current_item
inputs = prompt[unique_id]['inputs']
class_type = prompt[unique_id]['class_type']
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
is_changed_old = ''
is_changed = ''
if hasattr(class_def, 'IS_CHANGED'):
if 'is_changed' not in prompt[unique_id]:
if unique_id in old_prompt and 'is_changed' in old_prompt[unique_id]:
is_changed_old = old_prompt[unique_id]['is_changed']
input_data_all = get_input_data(inputs, class_def)
is_changed = class_def.IS_CHANGED(**input_data_all)
prompt[unique_id]['is_changed'] = is_changed
else:
is_changed = prompt[unique_id]['is_changed']
if unique_id not in outputs:
return True
to_delete = False
if is_changed != is_changed_old:
to_delete = True
elif unique_id not in old_prompt:
to_delete = True
elif inputs == old_prompt[unique_id]['inputs']:
for x in inputs:
input_data = inputs[x]
if isinstance(input_data, list):
input_unique_id = input_data[0]
output_index = input_data[1]
if input_unique_id in outputs:
to_delete = recursive_output_delete_if_changed(prompt, old_prompt, outputs, input_unique_id)
else:
to_delete = True
if to_delete:
break
else:
to_delete = True
if to_delete:
print("deleted", unique_id)
d = outputs.pop(unique_id)
del d
return to_delete
class PromptExecutor:
def __init__(self):
self.outputs = {}
self.old_prompt = {}
def execute(self, prompt, extra_data={}):
with torch.no_grad():
for x in prompt:
recursive_output_delete_if_changed(prompt, self.old_prompt, self.outputs, x)
current_outputs = set(self.outputs.keys())
executed = []
try:
to_execute = []
for x in prompt:
class_ = nodes.NODE_CLASS_MAPPINGS[prompt[x]['class_type']]
if hasattr(class_, 'OUTPUT_NODE'):
to_execute += [(0, x)]
while len(to_execute) > 0:
to_execute = sorted(list(map(lambda a: (len(recursive_will_execute(prompt, self.outputs, a[-1])), a[-1]), to_execute)))
x = to_execute.pop(0)[-1]
class_ = nodes.NODE_CLASS_MAPPINGS[prompt[x]['class_type']]
if hasattr(class_, 'OUTPUT_NODE'):
if class_.OUTPUT_NODE == True:
valid = False
try:
m = validate_inputs(prompt, x)
valid = m[0]
except:
valid = False
if valid:
executed += recursive_execute(prompt, self.outputs, x, extra_data)
except Exception as e:
print(traceback.format_exc())
to_delete = []
for o in self.outputs:
if o not in current_outputs:
to_delete += [o]
if o in self.old_prompt:
d = self.old_prompt.pop(o)
del d
for o in to_delete:
d = self.outputs.pop(o)
del d
else:
executed = set(executed)
for x in executed:
self.old_prompt[x] = copy.deepcopy(prompt[x])
def validate_inputs(prompt, item):
unique_id = item
inputs = prompt[unique_id]['inputs']
class_type = prompt[unique_id]['class_type']
obj_class = nodes.NODE_CLASS_MAPPINGS[class_type]
class_inputs = obj_class.INPUT_TYPES()
required_inputs = class_inputs['required']
for x in required_inputs:
if x not in inputs:
return (False, "Required input is missing. {}, {}".format(class_type, x))
val = inputs[x]
info = required_inputs[x]
type_input = info[0]
if isinstance(val, list):
if len(val) != 2:
return (False, "Bad Input. {}, {}".format(class_type, x))
o_id = val[0]
o_class_type = prompt[o_id]['class_type']
r = nodes.NODE_CLASS_MAPPINGS[o_class_type].RETURN_TYPES
if r[val[1]] != type_input:
return (False, "Return type mismatch. {}, {}".format(class_type, x))
r = validate_inputs(prompt, o_id)
if r[0] == False:
return r
else:
if type_input == "INT":
val = int(val)
inputs[x] = val
if type_input == "FLOAT":
val = float(val)
inputs[x] = val
if type_input == "STRING":
val = str(val)
inputs[x] = val
if len(info) > 1:
if "min" in info[1] and val < info[1]["min"]:
return (False, "Value smaller than min. {}, {}".format(class_type, x))
if "max" in info[1] and val > info[1]["max"]:
return (False, "Value bigger than max. {}, {}".format(class_type, x))
if isinstance(type_input, list):
if val not in type_input:
return (False, "Value not in list. {}, {}: {} not in {}".format(class_type, x, val, type_input))
return (True, "")
def validate_prompt(prompt):
outputs = set()
for x in prompt:
class_ = nodes.NODE_CLASS_MAPPINGS[prompt[x]['class_type']]
if hasattr(class_, 'OUTPUT_NODE') and class_.OUTPUT_NODE == True:
outputs.add(x)
if len(outputs) == 0:
return (False, "Prompt has no outputs")
good_outputs = set()
errors = []
for o in outputs:
valid = False
reason = ""
try:
m = validate_inputs(prompt, o)
valid = m[0]
reason = m[1]
except:
valid = False
reason = "Parsing error"
if valid == True:
good_outputs.add(x)
else:
print("Failed to validate prompt for output {} {}".format(o, reason))
print("output will be ignored")
errors += [(o, reason)]
if len(good_outputs) == 0:
errors_list = "\n".join(map(lambda a: "{}".format(a[1]), errors))
return (False, "Prompt has no properly connected outputs\n {}".format(errors_list))
return (True, "")
def prompt_worker(q):
e = PromptExecutor()
while True:
item = q.get()
e.execute(item[-2], item[-1])
q.task_done()
from http.server import BaseHTTPRequestHandler, HTTPServer
class PromptServer(BaseHTTPRequestHandler):
def _set_headers(self, code=200, ct='text/html'):
self.send_response(code)
self.send_header('Content-type', ct)
self.end_headers()
def log_message(self, format, *args):
pass
def do_GET(self):
if self.path == "/prompt":
self._set_headers(ct='application/json')
prompt_info = {}
exec_info = {}
exec_info['queue_remaining'] = self.server.prompt_queue.unfinished_tasks
prompt_info['exec_info'] = exec_info
self.wfile.write(json.dumps(prompt_info).encode('utf-8'))
elif self.path == "/object_info":
self._set_headers(ct='application/json')
out = {}
for x in nodes.NODE_CLASS_MAPPINGS:
obj_class = nodes.NODE_CLASS_MAPPINGS[x]
info = {}
info['input'] = obj_class.INPUT_TYPES()
info['output'] = obj_class.RETURN_TYPES
info['name'] = x #TODO
info['description'] = ''
info['category'] = 'sd'
if hasattr(obj_class, 'CATEGORY'):
info['category'] = obj_class.CATEGORY
out[x] = info
self.wfile.write(json.dumps(out).encode('utf-8'))
elif self.path[1:] in os.listdir(self.server.server_dir):
if self.path[1:].endswith('.css'):
self._set_headers(ct='text/css')
elif self.path[1:].endswith('.js'):
self._set_headers(ct='text/javascript')
else:
self._set_headers()
with open(os.path.join(self.server.server_dir, self.path[1:]), "rb") as f:
self.wfile.write(f.read())
else:
self._set_headers()
with open(os.path.join(self.server.server_dir, "index.html"), "rb") as f:
self.wfile.write(f.read())
def do_HEAD(self):
self._set_headers()
def do_POST(self):
resp_code = 200
out_string = ""
if self.path == "/prompt":
print("got prompt")
self.data_string = self.rfile.read(int(self.headers['Content-Length']))
json_data = json.loads(self.data_string)
if "number" in json_data:
number = float(json_data['number'])
else:
number = self.server.number
self.server.number += 1
if "prompt" in json_data:
prompt = json_data["prompt"]
valid = validate_prompt(prompt)
extra_data = {}
if "extra_data" in json_data:
extra_data = json_data["extra_data"]
if valid[0]:
self.server.prompt_queue.put((number, id(prompt), prompt, extra_data))
else:
resp_code = 400
out_string = valid[1]
print("invalid prompt:", valid[1])
self._set_headers(code=resp_code)
self.end_headers()
self.wfile.write(out_string.encode('utf8'))
return
def run(prompt_queue, address='', port=8188):
server_address = (address, port)
httpd = HTTPServer(server_address, PromptServer)
httpd.server_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "webshit")
httpd.prompt_queue = prompt_queue
httpd.number = 0
if server_address[0] == '':
addr = '0.0.0.0'
else:
addr = server_address[0]
print("Starting server\n")
print("To see the GUI go to: http://{}:{}".format(addr, server_address[1]))
httpd.serve_forever()
if __name__ == "__main__":
q = queue.PriorityQueue()
threading.Thread(target=prompt_worker, daemon=True, args=(q,)).start()
run(q, address='127.0.0.1', port=8188)