You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
77 lines
2.6 KiB
77 lines
2.6 KiB
import os |
|
import importlib.util |
|
from comfy.cli_args import args |
|
|
|
#Can't use pytorch to get the GPU names because the cuda malloc has to be set before the first import. |
|
def get_gpu_names(): |
|
if os.name == 'nt': |
|
import ctypes |
|
|
|
# Define necessary C structures and types |
|
class DISPLAY_DEVICEA(ctypes.Structure): |
|
_fields_ = [ |
|
('cb', ctypes.c_ulong), |
|
('DeviceName', ctypes.c_char * 32), |
|
('DeviceString', ctypes.c_char * 128), |
|
('StateFlags', ctypes.c_ulong), |
|
('DeviceID', ctypes.c_char * 128), |
|
('DeviceKey', ctypes.c_char * 128) |
|
] |
|
|
|
# Load user32.dll |
|
user32 = ctypes.windll.user32 |
|
|
|
# Call EnumDisplayDevicesA |
|
def enum_display_devices(): |
|
device_info = DISPLAY_DEVICEA() |
|
device_info.cb = ctypes.sizeof(device_info) |
|
device_index = 0 |
|
gpu_names = set() |
|
|
|
while user32.EnumDisplayDevicesA(None, device_index, ctypes.byref(device_info), 0): |
|
device_index += 1 |
|
gpu_names.add(device_info.DeviceString.decode('utf-8')) |
|
return gpu_names |
|
return enum_display_devices() |
|
else: |
|
return set() |
|
|
|
def cuda_malloc_supported(): |
|
blacklist = {"GeForce GTX 960M", "GeForce GTX 950M", "GeForce 945M", "GeForce 940M", "GeForce 930M", "GeForce 920M", "GeForce 910M", "GeForce GTX 750", "GeForce GTX 745"} |
|
try: |
|
names = get_gpu_names() |
|
except: |
|
names = set() |
|
for x in names: |
|
if "NVIDIA" in x: |
|
for b in blacklist: |
|
if b in x: |
|
return False |
|
return True |
|
|
|
|
|
if not args.cuda_malloc: |
|
try: |
|
version = "" |
|
torch_spec = importlib.util.find_spec("torch") |
|
for folder in torch_spec.submodule_search_locations: |
|
ver_file = os.path.join(folder, "version.py") |
|
if os.path.isfile(ver_file): |
|
spec = importlib.util.spec_from_file_location("torch_version_import", ver_file) |
|
module = importlib.util.module_from_spec(spec) |
|
spec.loader.exec_module(module) |
|
version = module.__version__ |
|
if int(version[0]) >= 2: #enable by default for torch version 2.0 and up |
|
args.cuda_malloc = cuda_malloc_supported() |
|
except: |
|
pass |
|
|
|
|
|
if args.cuda_malloc and not args.disable_cuda_malloc: |
|
env_var = os.environ.get('PYTORCH_CUDA_ALLOC_CONF', None) |
|
if env_var is None: |
|
env_var = "backend:cudaMallocAsync" |
|
else: |
|
env_var += ",backend:cudaMallocAsync" |
|
|
|
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = env_var
|
|
|