The most powerful and modular stable diffusion GUI, api and backend with a graph/nodes interface.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

134 lines
4.8 KiB

import math
import os
from pathlib import Path
from cleanfid.inception_torchscript import InceptionV3W
import clip
from resize_right import resize
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from tqdm.auto import trange
from . import utils
class InceptionV3FeatureExtractor(nn.Module):
def __init__(self, device='cpu'):
super().__init__()
path = Path(os.environ.get('XDG_CACHE_HOME', Path.home() / '.cache')) / 'k-diffusion'
url = 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/inception-2015-12-05.pt'
digest = 'f58cb9b6ec323ed63459aa4fb441fe750cfe39fafad6da5cb504a16f19e958f4'
utils.download_file(path / 'inception-2015-12-05.pt', url, digest)
self.model = InceptionV3W(str(path), resize_inside=False).to(device)
self.size = (299, 299)
def forward(self, x):
if x.shape[2:4] != self.size:
x = resize(x, out_shape=self.size, pad_mode='reflect')
if x.shape[1] == 1:
x = torch.cat([x] * 3, dim=1)
x = (x * 127.5 + 127.5).clamp(0, 255)
return self.model(x)
class CLIPFeatureExtractor(nn.Module):
def __init__(self, name='ViT-L/14@336px', device='cpu'):
super().__init__()
self.model = clip.load(name, device=device)[0].eval().requires_grad_(False)
self.normalize = transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711))
self.size = (self.model.visual.input_resolution, self.model.visual.input_resolution)
def forward(self, x):
if x.shape[2:4] != self.size:
x = resize(x.add(1).div(2), out_shape=self.size, pad_mode='reflect').clamp(0, 1)
x = self.normalize(x)
x = self.model.encode_image(x).float()
x = F.normalize(x) * x.shape[1] ** 0.5
return x
def compute_features(accelerator, sample_fn, extractor_fn, n, batch_size):
n_per_proc = math.ceil(n / accelerator.num_processes)
feats_all = []
try:
for i in trange(0, n_per_proc, batch_size, disable=not accelerator.is_main_process):
cur_batch_size = min(n - i, batch_size)
samples = sample_fn(cur_batch_size)[:cur_batch_size]
feats_all.append(accelerator.gather(extractor_fn(samples)))
except StopIteration:
pass
return torch.cat(feats_all)[:n]
def polynomial_kernel(x, y):
d = x.shape[-1]
dot = x @ y.transpose(-2, -1)
return (dot / d + 1) ** 3
def squared_mmd(x, y, kernel=polynomial_kernel):
m = x.shape[-2]
n = y.shape[-2]
kxx = kernel(x, x)
kyy = kernel(y, y)
kxy = kernel(x, y)
kxx_sum = kxx.sum([-1, -2]) - kxx.diagonal(dim1=-1, dim2=-2).sum(-1)
kyy_sum = kyy.sum([-1, -2]) - kyy.diagonal(dim1=-1, dim2=-2).sum(-1)
kxy_sum = kxy.sum([-1, -2])
term_1 = kxx_sum / m / (m - 1)
term_2 = kyy_sum / n / (n - 1)
term_3 = kxy_sum * 2 / m / n
return term_1 + term_2 - term_3
@utils.tf32_mode(matmul=False)
def kid(x, y, max_size=5000):
x_size, y_size = x.shape[0], y.shape[0]
n_partitions = math.ceil(max(x_size / max_size, y_size / max_size))
total_mmd = x.new_zeros([])
for i in range(n_partitions):
cur_x = x[round(i * x_size / n_partitions):round((i + 1) * x_size / n_partitions)]
cur_y = y[round(i * y_size / n_partitions):round((i + 1) * y_size / n_partitions)]
total_mmd = total_mmd + squared_mmd(cur_x, cur_y)
return total_mmd / n_partitions
class _MatrixSquareRootEig(torch.autograd.Function):
@staticmethod
def forward(ctx, a):
vals, vecs = torch.linalg.eigh(a)
ctx.save_for_backward(vals, vecs)
return vecs @ vals.abs().sqrt().diag_embed() @ vecs.transpose(-2, -1)
@staticmethod
def backward(ctx, grad_output):
vals, vecs = ctx.saved_tensors
d = vals.abs().sqrt().unsqueeze(-1).repeat_interleave(vals.shape[-1], -1)
vecs_t = vecs.transpose(-2, -1)
return vecs @ (vecs_t @ grad_output @ vecs / (d + d.transpose(-2, -1))) @ vecs_t
def sqrtm_eig(a):
if a.ndim < 2:
raise RuntimeError('tensor of matrices must have at least 2 dimensions')
if a.shape[-2] != a.shape[-1]:
raise RuntimeError('tensor must be batches of square matrices')
return _MatrixSquareRootEig.apply(a)
@utils.tf32_mode(matmul=False)
def fid(x, y, eps=1e-8):
x_mean = x.mean(dim=0)
y_mean = y.mean(dim=0)
mean_term = (x_mean - y_mean).pow(2).sum()
x_cov = torch.cov(x.T)
y_cov = torch.cov(y.T)
eps_eye = torch.eye(x_cov.shape[0], device=x_cov.device, dtype=x_cov.dtype) * eps
x_cov = x_cov + eps_eye
y_cov = y_cov + eps_eye
x_cov_sqrt = sqrtm_eig(x_cov)
cov_term = torch.trace(x_cov + y_cov - 2 * sqrtm_eig(x_cov_sqrt @ y_cov @ x_cov_sqrt))
return mean_term + cov_term