You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
134 lines
4.8 KiB
134 lines
4.8 KiB
import math |
|
import os |
|
from pathlib import Path |
|
|
|
from cleanfid.inception_torchscript import InceptionV3W |
|
import clip |
|
from resize_right import resize |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from torchvision import transforms |
|
from tqdm.auto import trange |
|
|
|
from . import utils |
|
|
|
|
|
class InceptionV3FeatureExtractor(nn.Module): |
|
def __init__(self, device='cpu'): |
|
super().__init__() |
|
path = Path(os.environ.get('XDG_CACHE_HOME', Path.home() / '.cache')) / 'k-diffusion' |
|
url = 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/inception-2015-12-05.pt' |
|
digest = 'f58cb9b6ec323ed63459aa4fb441fe750cfe39fafad6da5cb504a16f19e958f4' |
|
utils.download_file(path / 'inception-2015-12-05.pt', url, digest) |
|
self.model = InceptionV3W(str(path), resize_inside=False).to(device) |
|
self.size = (299, 299) |
|
|
|
def forward(self, x): |
|
if x.shape[2:4] != self.size: |
|
x = resize(x, out_shape=self.size, pad_mode='reflect') |
|
if x.shape[1] == 1: |
|
x = torch.cat([x] * 3, dim=1) |
|
x = (x * 127.5 + 127.5).clamp(0, 255) |
|
return self.model(x) |
|
|
|
|
|
class CLIPFeatureExtractor(nn.Module): |
|
def __init__(self, name='ViT-L/14@336px', device='cpu'): |
|
super().__init__() |
|
self.model = clip.load(name, device=device)[0].eval().requires_grad_(False) |
|
self.normalize = transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), |
|
std=(0.26862954, 0.26130258, 0.27577711)) |
|
self.size = (self.model.visual.input_resolution, self.model.visual.input_resolution) |
|
|
|
def forward(self, x): |
|
if x.shape[2:4] != self.size: |
|
x = resize(x.add(1).div(2), out_shape=self.size, pad_mode='reflect').clamp(0, 1) |
|
x = self.normalize(x) |
|
x = self.model.encode_image(x).float() |
|
x = F.normalize(x) * x.shape[1] ** 0.5 |
|
return x |
|
|
|
|
|
def compute_features(accelerator, sample_fn, extractor_fn, n, batch_size): |
|
n_per_proc = math.ceil(n / accelerator.num_processes) |
|
feats_all = [] |
|
try: |
|
for i in trange(0, n_per_proc, batch_size, disable=not accelerator.is_main_process): |
|
cur_batch_size = min(n - i, batch_size) |
|
samples = sample_fn(cur_batch_size)[:cur_batch_size] |
|
feats_all.append(accelerator.gather(extractor_fn(samples))) |
|
except StopIteration: |
|
pass |
|
return torch.cat(feats_all)[:n] |
|
|
|
|
|
def polynomial_kernel(x, y): |
|
d = x.shape[-1] |
|
dot = x @ y.transpose(-2, -1) |
|
return (dot / d + 1) ** 3 |
|
|
|
|
|
def squared_mmd(x, y, kernel=polynomial_kernel): |
|
m = x.shape[-2] |
|
n = y.shape[-2] |
|
kxx = kernel(x, x) |
|
kyy = kernel(y, y) |
|
kxy = kernel(x, y) |
|
kxx_sum = kxx.sum([-1, -2]) - kxx.diagonal(dim1=-1, dim2=-2).sum(-1) |
|
kyy_sum = kyy.sum([-1, -2]) - kyy.diagonal(dim1=-1, dim2=-2).sum(-1) |
|
kxy_sum = kxy.sum([-1, -2]) |
|
term_1 = kxx_sum / m / (m - 1) |
|
term_2 = kyy_sum / n / (n - 1) |
|
term_3 = kxy_sum * 2 / m / n |
|
return term_1 + term_2 - term_3 |
|
|
|
|
|
@utils.tf32_mode(matmul=False) |
|
def kid(x, y, max_size=5000): |
|
x_size, y_size = x.shape[0], y.shape[0] |
|
n_partitions = math.ceil(max(x_size / max_size, y_size / max_size)) |
|
total_mmd = x.new_zeros([]) |
|
for i in range(n_partitions): |
|
cur_x = x[round(i * x_size / n_partitions):round((i + 1) * x_size / n_partitions)] |
|
cur_y = y[round(i * y_size / n_partitions):round((i + 1) * y_size / n_partitions)] |
|
total_mmd = total_mmd + squared_mmd(cur_x, cur_y) |
|
return total_mmd / n_partitions |
|
|
|
|
|
class _MatrixSquareRootEig(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, a): |
|
vals, vecs = torch.linalg.eigh(a) |
|
ctx.save_for_backward(vals, vecs) |
|
return vecs @ vals.abs().sqrt().diag_embed() @ vecs.transpose(-2, -1) |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
vals, vecs = ctx.saved_tensors |
|
d = vals.abs().sqrt().unsqueeze(-1).repeat_interleave(vals.shape[-1], -1) |
|
vecs_t = vecs.transpose(-2, -1) |
|
return vecs @ (vecs_t @ grad_output @ vecs / (d + d.transpose(-2, -1))) @ vecs_t |
|
|
|
|
|
def sqrtm_eig(a): |
|
if a.ndim < 2: |
|
raise RuntimeError('tensor of matrices must have at least 2 dimensions') |
|
if a.shape[-2] != a.shape[-1]: |
|
raise RuntimeError('tensor must be batches of square matrices') |
|
return _MatrixSquareRootEig.apply(a) |
|
|
|
|
|
@utils.tf32_mode(matmul=False) |
|
def fid(x, y, eps=1e-8): |
|
x_mean = x.mean(dim=0) |
|
y_mean = y.mean(dim=0) |
|
mean_term = (x_mean - y_mean).pow(2).sum() |
|
x_cov = torch.cov(x.T) |
|
y_cov = torch.cov(y.T) |
|
eps_eye = torch.eye(x_cov.shape[0], device=x_cov.device, dtype=x_cov.dtype) * eps |
|
x_cov = x_cov + eps_eye |
|
y_cov = y_cov + eps_eye |
|
x_cov_sqrt = sqrtm_eig(x_cov) |
|
cov_term = torch.trace(x_cov + y_cov - 2 * sqrtm_eig(x_cov_sqrt @ y_cov @ x_cov_sqrt)) |
|
return mean_term + cov_term
|
|
|