You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
221 lines
7.7 KiB
221 lines
7.7 KiB
import torch |
|
|
|
import os |
|
import sys |
|
import json |
|
|
|
from PIL import Image |
|
from PIL.PngImagePlugin import PngInfo |
|
import numpy as np |
|
|
|
sys.path.append(os.path.join(sys.path[0], "comfy")) |
|
|
|
|
|
import comfy.samplers |
|
import comfy.sd |
|
|
|
supported_ckpt_extensions = ['.ckpt'] |
|
try: |
|
import safetensors.torch |
|
supported_ckpt_extensions += ['.safetensors'] |
|
except: |
|
print("Could not import safetensors, safetensors support disabled.") |
|
|
|
def filter_files_extensions(files, extensions): |
|
return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions, files))) |
|
|
|
class CLIPTextEncode: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"text": ("STRING", ), "clip": ("CLIP", )}} |
|
RETURN_TYPES = ("CONDITIONING",) |
|
FUNCTION = "encode" |
|
|
|
def encode(self, clip, text): |
|
return (clip.encode(text), ) |
|
|
|
class VAEDecode: |
|
def __init__(self, device="cpu"): |
|
self.device = device |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}} |
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "decode" |
|
|
|
def decode(self, vae, samples): |
|
return (vae.decode(samples), ) |
|
|
|
class VAEEncode: |
|
def __init__(self, device="cpu"): |
|
self.device = device |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}} |
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "encode" |
|
|
|
def encode(self, vae, pixels): |
|
return (vae.encode(pixels), ) |
|
|
|
class CheckpointLoader: |
|
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models") |
|
config_dir = os.path.join(models_dir, "configs") |
|
ckpt_dir = os.path.join(models_dir, "checkpoints") |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "config_name": (filter_files_extensions(os.listdir(s.config_dir), '.yaml'), ), |
|
"ckpt_name": (filter_files_extensions(os.listdir(s.ckpt_dir), supported_ckpt_extensions), )}} |
|
RETURN_TYPES = ("MODEL", "CLIP", "VAE") |
|
FUNCTION = "load_checkpoint" |
|
|
|
def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True): |
|
config_path = os.path.join(self.config_dir, config_name) |
|
ckpt_path = os.path.join(self.ckpt_dir, ckpt_name) |
|
return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True) |
|
|
|
class VAELoader: |
|
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models") |
|
vae_dir = os.path.join(models_dir, "vae") |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "vae_name": (filter_files_extensions(os.listdir(s.vae_dir), supported_ckpt_extensions), )}} |
|
RETURN_TYPES = ("VAE",) |
|
FUNCTION = "load_vae" |
|
|
|
#TODO: scale factor? |
|
def load_vae(self, vae_name): |
|
vae_path = os.path.join(self.vae_dir, vae_name) |
|
vae = comfy.sd.VAE(ckpt_path=vae_path) |
|
return (vae,) |
|
|
|
class EmptyLatentImage: |
|
def __init__(self, device="cpu"): |
|
self.device = device |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}), |
|
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}), |
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}} |
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "generate" |
|
|
|
def generate(self, width, height, batch_size=1): |
|
latent = torch.zeros([batch_size, 4, height // 8, width // 8]) |
|
return (latent, ) |
|
|
|
class LatentUpscale: |
|
upscale_methods = ["nearest-exact", "bilinear", "area"] |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,), |
|
"width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}), |
|
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),}} |
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "upscale" |
|
|
|
def upscale(self, samples, upscale_method, width, height): |
|
s = torch.nn.functional.interpolate(samples, size=(height // 8, width // 8), mode=upscale_method) |
|
return (s,) |
|
|
|
class KSampler: |
|
def __init__(self, device="cuda"): |
|
self.device = device |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": |
|
{"model": ("MODEL",), |
|
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), |
|
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), |
|
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), |
|
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), |
|
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), |
|
"positive": ("CONDITIONING", ), |
|
"negative": ("CONDITIONING", ), |
|
"latent_image": ("LATENT", ), |
|
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
}} |
|
|
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "sample" |
|
|
|
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0): |
|
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu") |
|
model = model.to(self.device) |
|
noise = noise.to(self.device) |
|
latent_image = latent_image.to(self.device) |
|
|
|
if positive.shape[0] < noise.shape[0]: |
|
positive = torch.cat([positive] * noise.shape[0]) |
|
|
|
if negative.shape[0] < noise.shape[0]: |
|
negative = torch.cat([negative] * noise.shape[0]) |
|
|
|
positive = positive.to(self.device) |
|
negative = negative.to(self.device) |
|
|
|
if sampler_name in comfy.samplers.KSampler.SAMPLERS: |
|
sampler = comfy.samplers.KSampler(model, steps=steps, device=self.device, sampler=sampler_name, scheduler=scheduler, denoise=denoise) |
|
else: |
|
#other samplers |
|
pass |
|
|
|
samples = sampler.sample(noise, positive, negative, cfg=cfg, latent_image=latent_image) |
|
samples = samples.cpu() |
|
model = model.cpu() |
|
return (samples, ) |
|
|
|
|
|
class SaveImage: |
|
def __init__(self): |
|
self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output") |
|
try: |
|
self.counter = int(max(filter(lambda a: 'ComfyUI_' in a, os.listdir(self.output_dir))).split('_')[1]) + 1 |
|
except: |
|
self.counter = 1 |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": |
|
{"images": ("IMAGE", )}, |
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, |
|
} |
|
|
|
RETURN_TYPES = () |
|
FUNCTION = "save_images" |
|
|
|
OUTPUT_NODE = True |
|
|
|
def save_images(self, images, prompt=None, extra_pnginfo=None): |
|
for image in images: |
|
i = 255. * image.cpu().numpy() |
|
img = Image.fromarray(i.astype(np.uint8)) |
|
metadata = PngInfo() |
|
if prompt is not None: |
|
metadata.add_text("prompt", json.dumps(prompt)) |
|
if extra_pnginfo is not None: |
|
for x in extra_pnginfo: |
|
metadata.add_text(x, json.dumps(extra_pnginfo[x])) |
|
img.save(f"output/ComfyUI_{self.counter:05}_.png", pnginfo=metadata, optimize=True) |
|
self.counter += 1 |
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"KSampler": KSampler, |
|
"CheckpointLoader": CheckpointLoader, |
|
"CLIPTextEncode": CLIPTextEncode, |
|
"VAEDecode": VAEDecode, |
|
"VAEEncode": VAEEncode, |
|
"VAELoader": VAELoader, |
|
"EmptyLatentImage": EmptyLatentImage, |
|
"LatentUpscale": LatentUpscale, |
|
"SaveImage": SaveImage, |
|
} |
|
|
|
|
|
|